• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2º grau

Equação do 2º grau

Mensagempor Manuella Vieira » Sex Mar 16, 2012 18:40

Olá, não sei se estou fazendo certo. Descobri o fórum e resolvi tentar =]
Bem, eu estou fazendo cursinho pré-vestibular e já terminei o ensino médio.
Mas não dos detalhes, do que fazer e como.
Eu não faço a minima ideia de como resolve, já tentei e não consigo. ='(
Eu sempre tive dificuldade. Interpretar e resolver.
Esta que eu estou com dificuldade, não sei o que fazer com o k :/
Deve ser muito fácil. Lá vai:

O menor valor inteiro de k para que a equação algébrica 2x(kx-4)-x²+6=0 em x não tenha raízes reais é:
a) -1 b)2 c)3 d)4 e)5

fico triste por não lembrar :/
eu quero aprender de novo :)
por favor me ajude!
Manuella Vieira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 16, 2012 18:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação do 2º grau

Mensagempor LuizAquino » Sex Mar 16, 2012 19:50

Manuella Vieira escreveu:O menor valor inteiro de k para que a equação algébrica 2x(kx-4)-x²+6=0 em x não tenha raízes reais é:
a) -1 b)2 c)3 d)4 e)5


Uma equação polinomial do 2º grau tem o formato abaixo:

ax^2 + bx + c = 0

Para que essa equação não tenha raízes reais, devemos ter \Delta < 0 , sendo que \Delta = b^2 - 4ac .

A equação do exercício que você postou é:

2x(kx-4) - x^2 + 6 = 0

Podemos arrumar essa equação dessa forma:

(2k-1)x^2 - 8x + 6=0

Deseja-se então que essa equação polinomial do 2º grau não tenha raízes reais. Sendo assim, temos que deve ocorrer:

(-8)^2 - 4 \cdot (2k-1)\cdot 6 < 0

Agora tente terminar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação do 2º grau

Mensagempor Manuella Vieira » Sex Mar 16, 2012 20:46

LuizAquino escreveu:Podemos arrumar essa equação dessa forma:

(2k-1)x^2 - 8x + 6=0

Deseja-se então que essa equação polinomial do 2º grau não tenha raízes reais. Sendo assim, temos que deve ocorrer:

(-8)^2 - 4 \cdot (2k-1)\cdot 6 < 0

Agora tente terminar.


Não entendi o jeito que vc arrumou.
Mas mesmo assim tentei, juro que tentei, tentei mesmo!
Mas não consigo, da fração, da raiz de 32... já deu até 1,83...
Não sei que formula tenho que usar ou como aplicar...

Por favor, não quero ser chata, mas tu sabes algum livro que pode me ajudar? Ou algum site com a matéria explicada desde o inicio?
Muitoooo obrigada pela atenção :)
Manuella Vieira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 16, 2012 18:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação do 2º grau

Mensagempor MarceloFantini » Sex Mar 16, 2012 22:26

A coleção de livros do Gelson Iezzi chamada "Fundamentos de Matemática Elementar" pode te ajudar. Sobre o que ele fez, sempre que temos uma equação do tipo ax^2 +bx +c =0 e a é diferente de zero, sabemos que são duas soluções e são da forma x = \frac{-b \pm \sqrt{\Delta}}{2a}, onde as letras representam os números da equação inicial. Esse símbolo \Delta denota um outro número auxiliar que ajuda a determinar se ela tem soluções reais ou não.

Quebrando em casos, o valor dele é \Delta = b^2 -4ac. Se ele for maior que zero, teremos que ela tem duas soluções diferentes. Se for igual a zero, as duas soluções são iguais. Se for menor que zero, não tem soluções reais. Ou seja, \Delta >0 tem duas soluções diferentes, \Delta =0 tem duas iguais e \Delta < 0 não tem soluções reais.

Agora tente seguir o que o Luiz disse.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação do 2º grau

Mensagempor LuizAquino » Sáb Mar 17, 2012 22:03

Manuella Vieira escreveu:Não entendi o jeito que vc arrumou.
Mas mesmo assim tentei, juro que tentei, tentei mesmo!
Mas não consigo, da fração, da raiz de 32... já deu até 1,83...
Não sei que formula tenho que usar ou como aplicar...


Vejamos onde eu parei:

(-8)^2 - 4 \cdot (2k-1)\cdot 6 < 0


Continuando, temos que:

64 - 48k + 24 < 0

- 48k + 88 < 0

- 48k  < -88

"Passando" o -48 dividindo, como esse é um número negativo, devemos inverter o sinal da desigualdade.

k  > \frac{-88}{-48}

k  > \frac{11}{6}

Calculando 11/6, obtemos aproximadamente 1,83.

O exercício pede "o menor valor inteiro de k". Então a pergunta é: qual é o menor número inteiro k tal que k > 1,83? Esse número inteiro é o 2. Portanto, temos que k = 2.

Manuella Vieira escreveu:Por favor, não quero ser chata, mas tu sabes algum livro que pode me ajudar? Ou algum site com a matéria explicada desde o inicio?


Além do livro já indicado pelo colega MarceloFantini, eu recomendo as videoaulas do canal do Nerckie no YouTube. O endereço do canal dele é:

http://www.youtube.com/nerckie

Por exemplo, procure pela videoaula "Matemática Zero - Aula 14 - Equação do Segundo Grau".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação do 2º grau

Mensagempor Manuella Vieira » Ter Mar 20, 2012 19:30

Muuuuito obrigada! :) vou procurar mesmo este livro =D
Manuella Vieira
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 16, 2012 18:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D