• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de uma PA

Soma de uma PA

Mensagempor ViniRFB » Sáb Mar 10, 2012 14:05

Pessoal como eu faço essa resolução. Estou com dúvida a respeito qual número é multiplicado por tal número.

280 =\cdot\dfrac {(1+x) x+5 \div{6}} {2}

Resultado deu: x^2 + 6x - 3  355 = 0

grato

vinirfb
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Soma de uma PA

Mensagempor ViniRFB » Sáb Mar 10, 2012 15:14

Quero saber o valor de:

(1+x ) \frac {x+5} {6} toda esssa equação dividida por 2

Quero o passo a passo. Qual ordem que devo proceder? Por favor.
Não sei colocar à questão como ela está realmente por causa dessas benditas fórmulas, mas acho que agora ficou mais claro.

Se possível quando vier a resposta a pessoa possa colocar a equação como deveria ter sido colocada por mim. Que depois eu pego o modelo e nas próximas faço correto!

grato

Vini!!
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Soma de uma PA

Mensagempor ant_dii » Sáb Mar 10, 2012 15:41

ViniRFB escreveu:Pessoal como eu faço essa resolução. Estou com dúvida a respeito qual número é multiplicado por tal número.

280 =\cdot\dfrac {(1+x) x+5 \div{6}} {2}

Resultado deu: x^2 + 6x - 3  355 = 0

grato

vinirfb



ViniRFB escreveu:Quero saber o valor de:

(1+x ) \frac {x+5} {6} toda esssa equação dividida por 2

Quero o passo a passo. Qual ordem que devo proceder? Por favor.
Não sei colocar à questão como ela está realmente por causa dessas benditas fórmulas, mas acho que agora ficou mais claro.

Se possível quando vier a resposta a pessoa possa colocar a equação como deveria ter sido colocada por mim. Que depois eu pego o modelo e nas próximas faço correto!

grato

Vini!!


O correto então, é

280 =\dfrac {(1+x) \left( \frac{x+5}{6} \right)} {2}

Siga o que pode ser feito

280 =\dfrac {(1+x) \left( \frac{x+5}{6} \right)} {2} \Rightarrow 2 \cdot 280 = 2\cdot \dfrac {(1+x) \left( \frac{x+5}{6} \right)} {2}  \Rightarrow 560= (1+x) \left( \frac{x+5}{6} \right) \Rightarrow  \\ \\ \Rightarrow 560 = \frac{x+5+x^2+5x}{6}  \Rightarrow  6\cdot 560 = 6\cdot \frac{x^2+6x+5}{6} \Rightarrow  \\ \\ \Rightarrow  3360 -5= x^2+6x+5-5 \Rightarrow 3355=x^2+6x \Rightarrow x^2+6x-3355=0
Editado pela última vez por ant_dii em Sáb Mar 10, 2012 15:49, em um total de 1 vez.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Soma de uma PA

Mensagempor ViniRFB » Sáb Mar 10, 2012 15:49

Muito Obrigado. ant_dii

Valeu

ViniRFB
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Soma de uma PA

Mensagempor ant_dii » Sáb Mar 10, 2012 15:51

Que isso...
Disponha
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}