• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor ViniRFB » Seg Mar 05, 2012 22:42

(Esaf) Se -5 < 5x + 1 <5, então 1-x está entre:

Gabarito

1/5 e 11/5

Não entendi, pois na resolução que tenho o cara pegou a inequação e desmembrou em duas assim depois igualou. Teria como fazer sem esse desmembramento?
Se sim como seria, se não. Gostaria do passo a passo.

Valeu amigos

ViniRFB :y:
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação

Mensagempor LuizAquino » Seg Mar 05, 2012 23:18

ViniRFB escreveu:(Esaf) Se -5 < 5x + 1 <5, então 1-x está entre:


ViniRFB escreveu:Não entendi, pois na resolução que tenho o cara pegou a inequação e desmembrou em duas assim depois igualou. Teria como fazer sem esse desmembramento?


Sim, há como fazer.

Primeiro, subtrai 1 em cada parte:

-5 < 5x + 1 < 5

-5 - 1< 5x + 1 - 1< 5 -1

-6 < 5x < 4

Agora, divida cada parte por 5:

-\frac{6}{5} < \dfrac{5x}{5} < \dfrac{4}{5}

-\frac{6}{5} < x < \dfrac{4}{5}

Multiplique cada parte por -1, pois no exercício é solicitado 1 - x. Ou seja, veja que aparece "-x" na expressão desejada.

Mas lembre-se que ao multiplicar uma inequação por um valor negativo, ela troca o seu sentido.

Dessa forma, temos que:

\frac{6}{5} > -x > - \dfrac{4}{5}

Agora note que escrever essa inequação é o mesmo que escrever:

- \dfrac{4}{5} < -x < \frac{6}{5}

Por fim, some cada parte por 1, pois no exercício é solicitado 1 - x. Ou seja, veja que aparece "1" na expressão desejada.

-\dfrac{4}{5} + 1< 1 - x < 1 + \frac{6}{5}

\dfrac{1}{5}< 1 - x < \frac{11}{5}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação

Mensagempor ViniRFB » Ter Mar 06, 2012 00:13

Muito obrigado professor!
Tinha esquecido realmente sobre a troca do sinal.

Mas assim:
-\frac  45 + 1 < 1 - x < 1+ \frac 16

Como se resolve isso? Não tenho ideia de como saiu resultado.

Grato e conto mais uma vez com sua ajuda!

ViniRFB
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação

Mensagempor LuizAquino » Ter Mar 06, 2012 00:37

ViniRFB escreveu:Mas assim:
-\dfrac{4}{5} + 1 < 1 - x < 1 + \frac{1}{6}

Como se resolve isso? Não tenho ideia de como saiu resultado.


Você sabe somar uma fração com um número inteiro?

Ou seja, qual é o resultado de -\dfrac{4}{5} + 1 ?

E qual é o resultado de 1 + \dfrac{1}{6} ?

Resolvendo essas operações, você obtém a resposta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação

Mensagempor ViniRFB » Sex Mar 09, 2012 16:36

Sei sim prof.

Obrigado!
:y:
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}