• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funcões

Funcões

Mensagempor jamesramos » Dom Mar 04, 2012 23:29

Oi, boa Noite, Poderiam me ajudar com esta Função:

Determine uma função Quadrática tal que f(1) =-4, f(1)=2 e f(2)=-1
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Funcões

Mensagempor MarceloFantini » Seg Mar 05, 2012 01:43

James, quais foram suas dificuldades? Você sabe o que é uma função quadrática? Ou, um polinômio de segundo grau, que é o caso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Funcões

Mensagempor jamesramos » Seg Mar 05, 2012 07:37

MarceloFantini escreveu:James, quais foram suas dificuldades? Você sabe o que é uma função quadrática? Ou, um polinômio de segundo grau, que é o caso.


A dificuldade nesta equação está em um modo elevado. Eu não sei como resolver uma Equação Quadrática. Preciso que um expert no Assunto me ajude nesta! Obrigado
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Funcões

Mensagempor MarceloFantini » Seg Mar 05, 2012 07:51

James, recomendo que você estude os vídeos do Nerckie e tente resolver a questão novamente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Funcões

Mensagempor jamesramos » Ter Mar 06, 2012 18:54

Oi Marcelo! Eu tive pesquisado e uma Função Quadrática é uma função do 2. Grau. A minha dúvida é como posso comecar a resolver, porque eu não entendo quando é dito que f(-1)= -4, f(1)=2 e f(2)=-1. Como eu devo comecar resolvendo este problema. Qual seria a melhor forma de resolver:
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Funcões

Mensagempor MarceloFantini » Ter Mar 06, 2012 19:20

Se é uma função do segundo grau, então f(x) = ax^2 +bx +c com a \neq 0, isto é, diferente de zero. Então

f(-1) = a(-1)^2 +b(-1) + c = a -b + c = -4;

f(1)= a(1)^2 +b(1) + c = a +b +c = 2;

f(2) = a(2)^2 +b(2) +c  = 4 +2b +c = -1.

Agora resolva o sistema.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Funcões

Mensagempor jamesramos » Sáb Mar 10, 2012 12:38

Oi Marcello.

Obrigado!
Entao eu cheguei a sistemas e calculei e cheguei no valor de a, b e c
Mas agora eu não consigo montar o gráfico e dar a Função do Problema, assim como pedido.
Você poderia me ajudar, por favor , fazendo esta como um exemplo: Porque eu tenho 6 mais problemas com o mesmo intuito deste para ser elaborado.

Att,
James
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando

Re: Funcões

Mensagempor MarceloFantini » Sáb Mar 10, 2012 13:45

Mas se você encontrou os coeficientes a, b e c, então você encontrou a função, basta colocar no ponto de partida: f(x) = ax^2 +bx +c.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Funcões

Mensagempor jamesramos » Sáb Mar 10, 2012 14:11

Ah, ok! Consegui. Entao ficou f(x)= -{2x}^{2}+3x+1
jamesramos
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Produção
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?