• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Assimptotas de funções

Assimptotas de funções

Mensagempor matpet92 » Seg Fev 20, 2012 01:24

Boa noite!
Necessito de saber como calcular assimptotas de uma função definida por recorrência. . .alguém me pode ajudar?
Obrigado,
Pedro Oliveira
matpet92
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 31, 2012 20:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências
Andamento: cursando

Re: Assimptotas de funções

Mensagempor MarceloFantini » Seg Fev 20, 2012 02:04

Boa noite Pedro. Poderemos ajudá-lo melhor se colocar o enunciado na íntegra.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Assimptotas de funções

Mensagempor matpet92 » Ter Fev 21, 2012 00:17

Boa noite!
Isso não me será possivel...o melhor que posso fazer será deixar este link : http://ctrigo.50megs.com/f15.htm
Nele vão ver um função h(x) definida por ramos.
A questão é quais são as Assimptotas??
Obrigado,
Pedro Oliveira
Ab
matpet92
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 31, 2012 20:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências
Andamento: cursando

Re: Assimptotas de funções

Mensagempor MarceloFantini » Ter Fev 21, 2012 12:01

Uma vez que você viu o enunciado no link, você pode digitá-lo usando Latex. Esta não é uma função definida por recorrência mas sim por casos, como disse. Em momento algum discutem retas assíntotas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Assimptotas de funções

Mensagempor LuizAquino » Ter Fev 21, 2012 17:55

matpet92,

Como já lembrou o colega MarceloFantini, você pode muito bem digitar o texto do exercício aqui no fórum.

Aliás, nós sempre recomendamos que isso seja feito, para que o fórum fique organizado.

Se você estiver com dúvidas de como usar o LaTeX para escrever a função do exercício, então basta usar o código abaixo em sua mensagem:

Código: Selecionar todos
[tex]
h(t) =
\begin{cases}
\frac{1}{3}t + 3, \textrm{ se } 0 \leq t < 60 \\
-t^2 + 120t - 3577, \textrm{ se } t \geq 60
\end{cases}
[/tex]


Após o envio de sua mensagem, esse código será substituído por:

h(t) = 
\begin{cases}
\frac{1}{3}t + 3, \textrm{ se } 0 \leq t < 60 \\
-t^2 + 120t - 3577, \textrm{ se } t \geq 60
\end{cases}

Quanto as assíntotas do gráfico dessa função, não há qualquer uma. Faça um esboço do gráfico para melhor perceber isso.

Note que no intervalo [0, 60) o gráfico será um pedaço de reta. Já no intervalo [60,\, +\infty) o gráfico será um pedaço de parábola.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.