por matpet92 » Seg Fev 20, 2012 01:24
Boa noite!
Necessito de saber como calcular assimptotas de uma função definida por recorrência. . .alguém me pode ajudar?
Obrigado,
Pedro Oliveira
-
matpet92
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Jan 31, 2012 20:28
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciências
- Andamento: cursando
por MarceloFantini » Seg Fev 20, 2012 02:04
Boa noite Pedro. Poderemos ajudá-lo melhor se colocar o enunciado na íntegra.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por matpet92 » Ter Fev 21, 2012 00:17
Boa noite!
Isso não me será possivel...o melhor que posso fazer será deixar este link :
http://ctrigo.50megs.com/f15.htmNele vão ver um função h(x) definida por ramos.
A questão é quais são as Assimptotas??
Obrigado,
Pedro Oliveira
Ab
-
matpet92
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Jan 31, 2012 20:28
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciências
- Andamento: cursando
por MarceloFantini » Ter Fev 21, 2012 12:01
Uma vez que você viu o enunciado no link, você pode digitá-lo usando Latex. Esta não é uma função definida por recorrência mas sim por casos, como disse. Em momento algum discutem retas assíntotas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Ter Fev 21, 2012 17:55
matpet92,
Como já lembrou o colega
MarceloFantini, você pode muito bem digitar o texto do exercício aqui no fórum.
Aliás, nós sempre recomendamos que isso seja feito, para que o fórum fique organizado.
Se você estiver com dúvidas de como usar o LaTeX para escrever a função do exercício, então basta usar o código abaixo em sua mensagem:
- Código: Selecionar todos
[tex]
h(t) =
\begin{cases}
\frac{1}{3}t + 3, \textrm{ se } 0 \leq t < 60 \\
-t^2 + 120t - 3577, \textrm{ se } t \geq 60
\end{cases}
[/tex]
Após o envio de sua mensagem, esse código será substituído por:

Quanto as assíntotas do gráfico dessa função, não há qualquer uma. Faça um esboço do gráfico para melhor perceber isso.
Note que no intervalo [0, 60) o gráfico será um pedaço de reta. Já no intervalo

o gráfico será um pedaço de parábola.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [funções] assimptotas de função racional
por telmojc » Qui Fev 09, 2012 15:20
- 1 Respostas
- 2301 Exibições
- Última mensagem por LuizAquino

Qui Fev 09, 2012 16:52
Funções
-
- Funções reais. como resolver estas funções...
por LEANDRO HENRIQUE » Ter Mar 04, 2014 18:43
- 0 Respostas
- 3199 Exibições
- Última mensagem por LEANDRO HENRIQUE

Ter Mar 04, 2014 18:43
Funções
-
- [Funções] Domínio e a imagem de funções
por concurseironf » Qui Ago 21, 2014 12:24
- 1 Respostas
- 3916 Exibições
- Última mensagem por Pessoa Estranha

Sex Ago 22, 2014 20:11
Funções
-
- [Funções] questões de funções
por Zandrojr » Qua Ago 31, 2011 11:39
- 0 Respostas
- 2915 Exibições
- Última mensagem por Zandrojr

Qua Ago 31, 2011 11:39
Funções
-
- Funções
por Revelants » Dom Out 05, 2008 15:07
- 1 Respostas
- 3157 Exibições
- Última mensagem por Molina

Dom Out 05, 2008 15:53
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.