• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Seg Fev 13, 2012 17:58

Classi?que cada uma das a?rmações abaixo como VERDADEIRA ou FALSA. Se verdadeira, prove; se falsa, prove ou dê um contra-exemplo.
(a) Se A e B são matrizes n × n tais que det(AB) = 0 ent˜ao A ´e singular ou B ´e
singular(não invertível).
(b) Para quaisquer matrizes A e B n × n vale: det(A + B) = det(A) + det(B).
(c) Se AB = 0 então A = 0 ou B = 0.
(d) Se A, B e AB são simétricas então AB = BA. (Lembre-se: uma matriz A é dita
simétrica se transposta de A = A.)

Consegui encontrar letra D - Verdadeiro, porém não to conseguindo provar para todas as matrizes
Letra C - Como falso.

Gostaria de explicação para A e B
Se possível provando ou dando contra exemplo pra ajudar no entendimento.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor LuizAquino » Seg Fev 13, 2012 18:19

Claudin escreveu:Classi?que cada uma das a?rmações abaixo como VERDADEIRA ou FALSA. Se verdadeira, prove; se falsa, prove ou dê um contra-exemplo.


Claudin escreveu:(a) Se A e B são matrizes n × n tais que det(AB) = 0 então A é singular ou B é singular (não invertível).


Verdadeiro.

Para justificar, lembre-se da propriedade dos determinantes que diz:

\det (AB) = (\det A)(\det B)

Tente terminar usando essa informação.

Claudin escreveu:(b) Para quaisquer matrizes A e B n × n vale: det(A + B) = det(A) + det(B).


Falso.

Basta escolher duas matrizes e comparar o valor de det(A+B) com det(A) + det(B).

Por exemplo, escolha A = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} e B = \begin{bmatrix}2 & 0 \\ 0 & 2\end{bmatrix} .

Agora faça os cálculos.

Claudin escreveu:(c) Se AB = 0 então A = 0 ou B = 0.


Falso.

Basta escolher duas matrizes não nulas, mas que AB seja nulo.

Por exemplo, escolha A = \begin{bmatrix}1 & -1 \\ 0 & 0\end{bmatrix} e B = \begin{bmatrix}2 & 0 \\ 2 & 0\end{bmatrix} .

Claudin escreveu:(d) Se A, B e AB são simétricas então AB = BA. (Lembre-se: uma matriz A é dita simétrica se transposta de A = A.)


Verdadeiro.

Para justificar, lembre-se de uma propriedade das transpostas que diz:

(AB)^T = B^TA^T

Tente terminar usando essa informação.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz

Mensagempor Claudin » Seg Fev 13, 2012 19:15

:y:

Excelente ajuda
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.