por Claudin » Seg Fev 13, 2012 17:58
Classi?que cada uma das a?rmações abaixo como VERDADEIRA ou FALSA. Se verdadeira, prove; se falsa, prove ou dê um contra-exemplo.
(a) Se A e B são matrizes n × n tais que det(AB) = 0 ent˜ao A ´e singular ou B ´e
singular(não invertível).
(b) Para quaisquer matrizes A e B n × n vale: det(A + B) = det(A) + det(B).
(c) Se AB = 0 então A = 0 ou B = 0.
(d) Se A, B e AB são simétricas então AB = BA. (Lembre-se: uma matriz A é dita
simétrica se transposta de A = A.)
Consegui encontrar letra D - Verdadeiro, porém não to conseguindo provar para todas as matrizes
Letra C - Como falso.
Gostaria de explicação para A e B
Se possível provando ou dando contra exemplo pra ajudar no entendimento.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Seg Fev 13, 2012 18:19
Claudin escreveu:Classi?que cada uma das a?rmações abaixo como VERDADEIRA ou FALSA. Se verdadeira, prove; se falsa, prove ou dê um contra-exemplo.
Claudin escreveu:(a) Se A e B são matrizes n × n tais que det(AB) = 0 então A é singular ou B é singular (não invertível).
Verdadeiro.
Para justificar, lembre-se da propriedade dos determinantes que diz:

Tente terminar usando essa informação.
Claudin escreveu:(b) Para quaisquer matrizes A e B n × n vale: det(A + B) = det(A) + det(B).
Falso.
Basta escolher duas matrizes e comparar o valor de det(A+B) com det(A) + det(B).
Por exemplo, escolha

e

.
Agora faça os cálculos.
Claudin escreveu:(c) Se AB = 0 então A = 0 ou B = 0.
Falso.
Basta escolher duas matrizes não nulas, mas que AB seja nulo.
Por exemplo, escolha

e

.
Claudin escreveu:(d) Se A, B e AB são simétricas então AB = BA. (Lembre-se: uma matriz A é dita simétrica se transposta de A = A.)
Verdadeiro.
Para justificar, lembre-se de uma propriedade das transpostas que diz:

Tente terminar usando essa informação.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Seg Fev 13, 2012 19:15
Excelente ajuda
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6946 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- [Matriz]- inversa de uma matriz
por Ana_Rodrigues » Seg Mar 26, 2012 08:54
- 2 Respostas
- 3413 Exibições
- Última mensagem por Ana_Rodrigues

Seg Mar 26, 2012 18:05
Matrizes e Determinantes
-
- [MATRIZ]Determinante da Matriz 4x4
por LAZAROTTI » Qui Mai 03, 2012 22:33
- 1 Respostas
- 6605 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:00
Matrizes e Determinantes
-
- [Matriz] Matriz com potencias
por rochadapesada » Dom Abr 07, 2013 20:29
- 3 Respostas
- 4544 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:32
Matrizes e Determinantes
-
- matriz
por Barbara » Ter Ago 18, 2009 15:26
- 4 Respostas
- 4686 Exibições
- Última mensagem por Molina

Qui Ago 20, 2009 18:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.