• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria métrica e espacial

geometria métrica e espacial

Mensagempor Aquamarine » Sáb Fev 11, 2012 16:15

Gstaria de saber como fica o valor das arestas da base
se formos calcular somente um pedaço da piramide, o tronco no caso
ele possivelmente dimiunui como eu encontro ?
Anexos
Sem título.jpg
Aquamarine
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Fev 06, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: geometria métrica e espacial

Mensagempor MarceloFantini » Sáb Fev 11, 2012 18:36

Por favor, evite postar questões diferentes em outros tópicos. Qual é o enunciado?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: geometria métrica e espacial

Mensagempor Aquamarine » Sáb Fev 11, 2012 19:01

Essas são as afirmativas
o que eu nao entendo eh como que fica o valor das arestas das bases nos troncos
nas partes da piramide, acho que nao posso usar a aresta da base da piramide grande pois essa vai diminuindo conforte a altura aumenta
Anexos
Sem título.jpg
Afirmativas
Aquamarine
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Fev 06, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: geometria métrica e espacial

Mensagempor MarceloFantini » Sáb Fev 11, 2012 21:00

A razão entre os volumes das piramides será a razão entre os segmentos ao cubo. Como a menor parte tem a razão entre as alturas como \frac{1}{5}, a razão entre os volumes será \left( \frac{1}{5} \right)^3 = 0,008, logo a menor parte pesa menos de 10g. A maior parte pode ser obtida pegando a piramide toda e retirando a piramide acima, cujo volume está na razão \frac{4}{5} do total, daí o volume estará na razão \left( \frac{4}{5} \right)^3 = 0,512, daí a maior parte tem peso 1 - 0,512 = 0,488 kg ou 488 gramas. Portanto, a maior e a menor parte somam 496g e as três partes do meio somam juntas mais de 0,5kg.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.