• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria métrica e espacial

geometria métrica e espacial

Mensagempor Aquamarine » Sáb Fev 11, 2012 16:15

Gstaria de saber como fica o valor das arestas da base
se formos calcular somente um pedaço da piramide, o tronco no caso
ele possivelmente dimiunui como eu encontro ?
Anexos
Sem título.jpg
Aquamarine
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Fev 06, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: geometria métrica e espacial

Mensagempor MarceloFantini » Sáb Fev 11, 2012 18:36

Por favor, evite postar questões diferentes em outros tópicos. Qual é o enunciado?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: geometria métrica e espacial

Mensagempor Aquamarine » Sáb Fev 11, 2012 19:01

Essas são as afirmativas
o que eu nao entendo eh como que fica o valor das arestas das bases nos troncos
nas partes da piramide, acho que nao posso usar a aresta da base da piramide grande pois essa vai diminuindo conforte a altura aumenta
Anexos
Sem título.jpg
Afirmativas
Aquamarine
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Fev 06, 2012 19:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: geometria métrica e espacial

Mensagempor MarceloFantini » Sáb Fev 11, 2012 21:00

A razão entre os volumes das piramides será a razão entre os segmentos ao cubo. Como a menor parte tem a razão entre as alturas como \frac{1}{5}, a razão entre os volumes será \left( \frac{1}{5} \right)^3 = 0,008, logo a menor parte pesa menos de 10g. A maior parte pode ser obtida pegando a piramide toda e retirando a piramide acima, cujo volume está na razão \frac{4}{5} do total, daí o volume estará na razão \left( \frac{4}{5} \right)^3 = 0,512, daí a maior parte tem peso 1 - 0,512 = 0,488 kg ou 488 gramas. Portanto, a maior e a menor parte somam 496g e as três partes do meio somam juntas mais de 0,5kg.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59