O 1 e o 2 são pra transformar em 1 só radical
1) -
![\frac{\sqrt[4]{639}}{\sqrt[4]{71}} \frac{\sqrt[4]{639}}{\sqrt[4]{71}}](/latexrender/pictures/d90726f87ead628e2add285dd124fae7.png)

![\sqrt[4]{\frac{9}{1}} \sqrt[4]{\frac{9}{1}}](/latexrender/pictures/91fa3b7c95b8983b3399c6f4a7729c85.png)
A resposta pelo gabarito:
![\sqrt[]{3} \sqrt[]{3}](/latexrender/pictures/b84ccc0f808c82dca2d7b0f887c64445.png)
2 -
![\sqrt[3]{\frac{y}{x}\sqrt[]{\frac{x}{y}}} \sqrt[3]{\frac{y}{x}\sqrt[]{\frac{x}{y}}}](/latexrender/pictures/959efb844a5d4bf8834afab8b8bfd59b.png)
Nesse eu tentei jogar o

![\sqrt[3]{\sqrt[]{\frac{x}{y}}.{\frac{y}{x}}^{2}} \sqrt[3]{\sqrt[]{\frac{x}{y}}.{\frac{y}{x}}^{2}}](/latexrender/pictures/53c5226e39b1d419d0c2a68d8fb0d61f.png)
![\sqrt[6]{\frac{x}{y}}.{\frac{y}{x}}^{2} \sqrt[6]{\frac{x}{y}}.{\frac{y}{x}}^{2}](/latexrender/pictures/85ad30df93c58f5d132a647e18b085ed.png)
Resposta pelo gabarito:
![\sqrt[6]{\frac{y}{x}} \sqrt[6]{\frac{y}{x}}](/latexrender/pictures/de27f2612c26b7adb5a46838cb64a74f.png)
Esse aqui é p/ usar distributiva:
3-
![(\sqrt[]{5}-1) (\sqrt[]{5}+3) (\sqrt[]{5}-1) (\sqrt[]{5}+3)](/latexrender/pictures/3caf6c1bf9fdf4e5550652041c701b28.png)
O que eu fiz :
![5+3\sqrt[]{5}-\sqrt[]{5}-3 5+3\sqrt[]{5}-\sqrt[]{5}-3](/latexrender/pictures/74b003c940a1dd158011a4f59cb269a1.png)
=
![2+2\sqrt[]{5} 2+2\sqrt[]{5}](/latexrender/pictures/ca9769b2d64cec2575a6c2dce95302a6.png)
O resultado pelo gabarito é :
![2(1+\sqrt[]{5}) 2(1+\sqrt[]{5})](/latexrender/pictures/609a97f29d3b94adb3f510d98055faf0.png)
4-
![\frac{2}{\sqrt[]{2-\sqrt[]{3}}} \frac{2}{\sqrt[]{2-\sqrt[]{3}}}](/latexrender/pictures/cc7142bd63a79739d3826de42cf19de1.png)
Esse aqui é p/ racionalizar, mas não sei como fazer, tentei de varias maneiras.
Resposta :
![8+4\sqrt[]{3} 8+4\sqrt[]{3}](/latexrender/pictures/675bb85d97fcebe00b9426c7662f2275.png)