por joaofonseca » Dom Jul 03, 2011 11:54
Nas funções racionais existe um caso especial, em que substituindo a variável independente por um valor, se obtem zero tanto no numerador como no denominador.
Exemplo:

Li algures que o contradominio de uma função são todos os valores de
y possíveis quando se substituí a variável independente por todos os valores possíveis para o dominio.
Analisando a função, posso concluír que não existem assintotas horizontais, e que a possível assintota vertical também não existe pois 4 anula tanto o denominador como o numerador. É precisamente em
x=4 que existe um buraco no gráfico da função, diz-se que a função não está definida nesse ponto.
Simplificando:

Posso concluír que o

?
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Renato_RJ » Dom Jul 03, 2011 12:51
Bom dia João...
Seguinte, você já viu que o polinômio do numerador é divisível pelo do denominador, logo a sua função racional é

, logo
o domínio (conjunto onde encontramos os valores para a variável x) será

enquanto que o seu contradomínio (conjunto com os valores de y) será

. Não entendi porque o seu contradomínio é

, ou você queria dizer que o seu domínio é esse ?? Pois em x=7 não existe indeterminação da função.
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por joaofonseca » Dom Jul 03, 2011 13:29
Renato_RJ abrigado,
Bem sei que a função

não está na forma irredutível. Por isso tem um fator comum, que é x-4. Por outro lado y=x+3 é a assintota obliqua.
Na expressão original, sabemos que x tem de ser diferente de 4 pois anularia o denominador, logo 4 não faz parte do dominio da função. Por isso quando se simplifica a expressão para y=x+3 é para valores diferentes de 4.
Como 4 anula também o numerador, x=4 não é uma assintota vertical.
Substituindo x por 4 em y=x+3 obten-se y=7, por isso concluí que se a função não está definida para (4,y), o y é igual a 7.
Se o dominio são todos os números reais exeto o 4 o contradominio serão todos os números reais exeto o 7.
Está é a minha dúvida.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Dom Jul 03, 2011 13:36
O contradomínio de uma função é o conjunto onde ela
pode assumir valores, mas que não necessariamente o faz. Exemplo:

. Note que a função nunca retornará um valor negativo, entretanto a priori ela pode. Então o contradomínio pode ser os reais, mas a imagem será

na sua questão.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Renato_RJ » Dom Jul 03, 2011 14:09
Agora eu entendi a sua dúvida João, mas o Fantini já respondeu...
Grato Fantini....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por telmojc » Qui Fev 09, 2012 15:22
nao sei se o seu pensamento está correcto mas uma maneira facil de saber o contradominio é calcular funçao inversa, e ver o dominio desta que será o contradominio da função normal
-
telmojc
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Fev 09, 2012 15:13
- Formação Escolar: EJA
- Andamento: cursando
por LuizAquino » Qui Fev 09, 2012 16:57
telmojc escreveu:nao sei se o seu pensamento está correcto mas uma maneira facil de saber o contradominio é calcular funçao inversa, e ver o dominio desta que será o contradominio da função normal
Por favor, leia o tópico:
Funções e Limitesviewtopic.php?f=107&t=7094
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por telmojc » Qui Fev 09, 2012 19:04
ah ok
ainda não aprendi a calcular o contra dominio por limites mas acho que aprendo ainda este mês
-
telmojc
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Fev 09, 2012 15:13
- Formação Escolar: EJA
- Andamento: cursando
por MarceloFantini » Qui Fev 09, 2012 19:07
O contradomínio é dado, e não calculado. A única pergunta relacionado a isso que pode fazer sentido é "encontre o maior contradomínio possível", pois podem existir vários.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Fev 10, 2012 10:52
MarceloFantini escreveu:O contradomínio é dado, e não calculado. A única pergunta relacionado a isso que pode fazer sentido é "encontre o maior contradomínio possível", pois podem existir vários.
Outra questão que também faz sentido seria: "encontre o
menor contradomínio possível".
Entretanto, essa questão poderia ser reescrita como: "encontre a imagem".
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Contradomínio de uma função(exercício)
por rebeca10 » Qua Jul 31, 2013 21:34
- 1 Respostas
- 2255 Exibições
- Última mensagem por e8group

Qua Jul 31, 2013 21:46
Funções
-
- [Contradomínio de um função exponencial]
por senhoradragneel96 » Sáb Jan 11, 2014 15:05
- 0 Respostas
- 4315 Exibições
- Última mensagem por senhoradragneel96

Sáb Jan 11, 2014 15:05
Funções
-
- Integral de função racional
por renan_a » Qua Jan 09, 2013 17:57
- 2 Respostas
- 1860 Exibições
- Última mensagem por renan_a

Qua Jan 09, 2013 22:05
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Limite de Função Racional
por joaofonseca » Qua Mai 04, 2011 20:50
- 3 Respostas
- 2207 Exibições
- Última mensagem por LuizAquino

Qua Mai 04, 2011 23:53
Cálculo: Limites, Derivadas e Integrais
-
- Função Racional! Ajuda urgente
por renatofbc » Qua Jun 22, 2011 22:33
- 2 Respostas
- 2097 Exibições
- Última mensagem por MarceloFantini

Qua Jun 22, 2011 23:35
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.