• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Contradominio de função racional

Contradominio de função racional

Mensagempor joaofonseca » Dom Jul 03, 2011 11:54

Nas funções racionais existe um caso especial, em que substituindo a variável independente por um valor, se obtem zero tanto no numerador como no denominador.
Exemplo:

y=\frac{x^2-x-12}{x-4}

Li algures que o contradominio de uma função são todos os valores de y possíveis quando se substituí a variável independente por todos os valores possíveis para o dominio.

Analisando a função, posso concluír que não existem assintotas horizontais, e que a possível assintota vertical também não existe pois 4 anula tanto o denominador como o numerador. É precisamente em x=4 que existe um buraco no gráfico da função, diz-se que a função não está definida nesse ponto.
Simplificando:

y=\frac{(x-4)(x+3)}{x-4}\Leftrightarrow y=x+3 , para x\neq 4

Posso concluír que o D'_{f}=\left \{ y\in \mathbb{R}:y\neq 7  \right \}?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor Renato_RJ » Dom Jul 03, 2011 12:51

Bom dia João...

Seguinte, você já viu que o polinômio do numerador é divisível pelo do denominador, logo a sua função racional é y = x + 3, logo
o domínio (conjunto onde encontramos os valores para a variável x) será \mathbb{R} enquanto que o seu contradomínio (conjunto com os valores de y) será \mathbb{R}. Não entendi porque o seu contradomínio é S = \{\mathbb{R} - 7\}, ou você queria dizer que o seu domínio é esse ?? Pois em x=7 não existe indeterminação da função.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor joaofonseca » Dom Jul 03, 2011 13:29

Renato_RJ abrigado,

Bem sei que a função y=\frac{x^2-x-12}{x-4} não está na forma irredutível. Por isso tem um fator comum, que é x-4. Por outro lado y=x+3 é a assintota obliqua.
Na expressão original, sabemos que x tem de ser diferente de 4 pois anularia o denominador, logo 4 não faz parte do dominio da função. Por isso quando se simplifica a expressão para y=x+3 é para valores diferentes de 4.
Como 4 anula também o numerador, x=4 não é uma assintota vertical.
Substituindo x por 4 em y=x+3 obten-se y=7, por isso concluí que se a função não está definida para (4,y), o y é igual a 7.
Se o dominio são todos os números reais exeto o 4 o contradominio serão todos os números reais exeto o 7.

Está é a minha dúvida.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor MarceloFantini » Dom Jul 03, 2011 13:36

O contradomínio de uma função é o conjunto onde ela pode assumir valores, mas que não necessariamente o faz. Exemplo: f: \, \mathbb{R} \to \mathbb{R}\; |\; x \mapsto x^2. Note que a função nunca retornará um valor negativo, entretanto a priori ela pode. Então o contradomínio pode ser os reais, mas a imagem será \mathbb{R} - \{ 7 \} na sua questão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Contradominio de função racional

Mensagempor Renato_RJ » Dom Jul 03, 2011 14:09

Agora eu entendi a sua dúvida João, mas o Fantini já respondeu...

Grato Fantini....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor telmojc » Qui Fev 09, 2012 15:22

nao sei se o seu pensamento está correcto mas uma maneira facil de saber o contradominio é calcular funçao inversa, e ver o dominio desta que será o contradominio da função normal
telmojc
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Fev 09, 2012 15:13
Formação Escolar: EJA
Andamento: cursando

Re: Contradominio de função racional

Mensagempor LuizAquino » Qui Fev 09, 2012 16:57

telmojc escreveu:nao sei se o seu pensamento está correcto mas uma maneira facil de saber o contradominio é calcular funçao inversa, e ver o dominio desta que será o contradominio da função normal


Por favor, leia o tópico:

Funções e Limites
viewtopic.php?f=107&t=7094
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Contradominio de função racional

Mensagempor telmojc » Qui Fev 09, 2012 19:04

ah ok
ainda não aprendi a calcular o contra dominio por limites mas acho que aprendo ainda este mês
telmojc
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Fev 09, 2012 15:13
Formação Escolar: EJA
Andamento: cursando

Re: Contradominio de função racional

Mensagempor MarceloFantini » Qui Fev 09, 2012 19:07

O contradomínio é dado, e não calculado. A única pergunta relacionado a isso que pode fazer sentido é "encontre o maior contradomínio possível", pois podem existir vários.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Contradominio de função racional

Mensagempor LuizAquino » Sex Fev 10, 2012 10:52

MarceloFantini escreveu:O contradomínio é dado, e não calculado. A única pergunta relacionado a isso que pode fazer sentido é "encontre o maior contradomínio possível", pois podem existir vários.


Outra questão que também faz sentido seria: "encontre o menor contradomínio possível".

Entretanto, essa questão poderia ser reescrita como: "encontre a imagem".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D