• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Contradominio de função racional

Contradominio de função racional

Mensagempor joaofonseca » Dom Jul 03, 2011 11:54

Nas funções racionais existe um caso especial, em que substituindo a variável independente por um valor, se obtem zero tanto no numerador como no denominador.
Exemplo:

y=\frac{x^2-x-12}{x-4}

Li algures que o contradominio de uma função são todos os valores de y possíveis quando se substituí a variável independente por todos os valores possíveis para o dominio.

Analisando a função, posso concluír que não existem assintotas horizontais, e que a possível assintota vertical também não existe pois 4 anula tanto o denominador como o numerador. É precisamente em x=4 que existe um buraco no gráfico da função, diz-se que a função não está definida nesse ponto.
Simplificando:

y=\frac{(x-4)(x+3)}{x-4}\Leftrightarrow y=x+3 , para x\neq 4

Posso concluír que o D'_{f}=\left \{ y\in \mathbb{R}:y\neq 7  \right \}?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor Renato_RJ » Dom Jul 03, 2011 12:51

Bom dia João...

Seguinte, você já viu que o polinômio do numerador é divisível pelo do denominador, logo a sua função racional é y = x + 3, logo
o domínio (conjunto onde encontramos os valores para a variável x) será \mathbb{R} enquanto que o seu contradomínio (conjunto com os valores de y) será \mathbb{R}. Não entendi porque o seu contradomínio é S = \{\mathbb{R} - 7\}, ou você queria dizer que o seu domínio é esse ?? Pois em x=7 não existe indeterminação da função.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor joaofonseca » Dom Jul 03, 2011 13:29

Renato_RJ abrigado,

Bem sei que a função y=\frac{x^2-x-12}{x-4} não está na forma irredutível. Por isso tem um fator comum, que é x-4. Por outro lado y=x+3 é a assintota obliqua.
Na expressão original, sabemos que x tem de ser diferente de 4 pois anularia o denominador, logo 4 não faz parte do dominio da função. Por isso quando se simplifica a expressão para y=x+3 é para valores diferentes de 4.
Como 4 anula também o numerador, x=4 não é uma assintota vertical.
Substituindo x por 4 em y=x+3 obten-se y=7, por isso concluí que se a função não está definida para (4,y), o y é igual a 7.
Se o dominio são todos os números reais exeto o 4 o contradominio serão todos os números reais exeto o 7.

Está é a minha dúvida.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor MarceloFantini » Dom Jul 03, 2011 13:36

O contradomínio de uma função é o conjunto onde ela pode assumir valores, mas que não necessariamente o faz. Exemplo: f: \, \mathbb{R} \to \mathbb{R}\; |\; x \mapsto x^2. Note que a função nunca retornará um valor negativo, entretanto a priori ela pode. Então o contradomínio pode ser os reais, mas a imagem será \mathbb{R} - \{ 7 \} na sua questão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Contradominio de função racional

Mensagempor Renato_RJ » Dom Jul 03, 2011 14:09

Agora eu entendi a sua dúvida João, mas o Fantini já respondeu...

Grato Fantini....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Contradominio de função racional

Mensagempor telmojc » Qui Fev 09, 2012 15:22

nao sei se o seu pensamento está correcto mas uma maneira facil de saber o contradominio é calcular funçao inversa, e ver o dominio desta que será o contradominio da função normal
telmojc
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Fev 09, 2012 15:13
Formação Escolar: EJA
Andamento: cursando

Re: Contradominio de função racional

Mensagempor LuizAquino » Qui Fev 09, 2012 16:57

telmojc escreveu:nao sei se o seu pensamento está correcto mas uma maneira facil de saber o contradominio é calcular funçao inversa, e ver o dominio desta que será o contradominio da função normal


Por favor, leia o tópico:

Funções e Limites
viewtopic.php?f=107&t=7094
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Contradominio de função racional

Mensagempor telmojc » Qui Fev 09, 2012 19:04

ah ok
ainda não aprendi a calcular o contra dominio por limites mas acho que aprendo ainda este mês
telmojc
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Fev 09, 2012 15:13
Formação Escolar: EJA
Andamento: cursando

Re: Contradominio de função racional

Mensagempor MarceloFantini » Qui Fev 09, 2012 19:07

O contradomínio é dado, e não calculado. A única pergunta relacionado a isso que pode fazer sentido é "encontre o maior contradomínio possível", pois podem existir vários.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Contradominio de função racional

Mensagempor LuizAquino » Sex Fev 10, 2012 10:52

MarceloFantini escreveu:O contradomínio é dado, e não calculado. A única pergunta relacionado a isso que pode fazer sentido é "encontre o maior contradomínio possível", pois podem existir vários.


Outra questão que também faz sentido seria: "encontre o menor contradomínio possível".

Entretanto, essa questão poderia ser reescrita como: "encontre a imagem".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.