• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geométrica

Progressão Geométrica

Mensagempor Ericka » Ter Jan 24, 2012 20:37

Numa PG crescente a2 - a1 = 39 e o primeiro termo a1 é igual ao quíntuplo da razão q. Calcule a1 e q.

Quando vou resolver acabo em uma equação do segundo grau, e o delta só dá 805 que não tem raiz exata.
Me ajudem por favor.
Ericka
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jan 05, 2012 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Geométrica

Mensagempor LuizAquino » Ter Jan 24, 2012 20:53

Ericka escreveu:Numa PG crescente a2 - a1 = 39 e o primeiro termo a1 é igual ao quíntuplo da razão q. Calcule a1 e q.

Quando vou resolver acabo em uma equação do segundo grau, e o delta só dá 805 que não tem raiz exata.
Me ajudem por favor.


E qual é o problema de não ter raiz exata?

Continue a resolução assim mesmo.

Você deverá encontrar:

a_1 = \frac{5+\sqrt{805}}{2}

q = \frac{5+\sqrt{805}}{10}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Geométrica

Mensagempor Ericka » Ter Jan 24, 2012 21:18

o problema é que por aí eu não é possível chegar aos resultados que são exatos (a1=15 e q=3)
Ericka
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jan 05, 2012 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Geométrica

Mensagempor LuizAquino » Ter Jan 24, 2012 21:26

Ericka escreveu:o problema é que por aí eu não é possível chegar aos resultados que são exatos (a1=15 e q=3)


Considerando esse gabarito, provavelmente houve um erro de digitação no enunciado do exercício, que deveria ser na verdade algo como:

Numa PG crescente a2 - a1 = 30 e o primeiro termo a1 é igual ao quíntuplo da razão q. Calcule a1 e q.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Geométrica

Mensagempor Ericka » Qua Jan 25, 2012 13:39

AAHHHH! Obrigadoo pela ajuda então!
Ericka
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jan 05, 2012 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}