• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geométrica

Progressão Geométrica

Mensagempor Ericka » Ter Jan 24, 2012 20:37

Numa PG crescente a2 - a1 = 39 e o primeiro termo a1 é igual ao quíntuplo da razão q. Calcule a1 e q.

Quando vou resolver acabo em uma equação do segundo grau, e o delta só dá 805 que não tem raiz exata.
Me ajudem por favor.
Ericka
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jan 05, 2012 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Geométrica

Mensagempor LuizAquino » Ter Jan 24, 2012 20:53

Ericka escreveu:Numa PG crescente a2 - a1 = 39 e o primeiro termo a1 é igual ao quíntuplo da razão q. Calcule a1 e q.

Quando vou resolver acabo em uma equação do segundo grau, e o delta só dá 805 que não tem raiz exata.
Me ajudem por favor.


E qual é o problema de não ter raiz exata?

Continue a resolução assim mesmo.

Você deverá encontrar:

a_1 = \frac{5+\sqrt{805}}{2}

q = \frac{5+\sqrt{805}}{10}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Geométrica

Mensagempor Ericka » Ter Jan 24, 2012 21:18

o problema é que por aí eu não é possível chegar aos resultados que são exatos (a1=15 e q=3)
Ericka
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jan 05, 2012 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Geométrica

Mensagempor LuizAquino » Ter Jan 24, 2012 21:26

Ericka escreveu:o problema é que por aí eu não é possível chegar aos resultados que são exatos (a1=15 e q=3)


Considerando esse gabarito, provavelmente houve um erro de digitação no enunciado do exercício, que deveria ser na verdade algo como:

Numa PG crescente a2 - a1 = 30 e o primeiro termo a1 é igual ao quíntuplo da razão q. Calcule a1 e q.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Geométrica

Mensagempor Ericka » Qua Jan 25, 2012 13:39

AAHHHH! Obrigadoo pela ajuda então!
Ericka
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jan 05, 2012 20:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.