• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Pares

Números Pares

Mensagempor Andreza » Seg Jan 23, 2012 15:38

Quantos são os números pares entre 1000 e 9999 que consistem de 4 algarismos distintos?

---------- --------------- ------------------ - ----------------



Neste exercício eu estou em dúvida sobre o q usar: Arranjo, combinação ou apenas permutação.

Desde já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Números Pares

Mensagempor Arkanus Darondra » Seg Jan 23, 2012 16:54

Andreza escreveu:Quantos são os números pares entre 1000 e 9999 que consistem de 4 algarismos distintos?

Neste exercício eu estou em dúvida sobre o q usar: Arranjo, combinação ou apenas permutação.

Desde já agradeço.

Olá Andreza.
Como a ordem importa, ou é arranjo ou permutação. Como não se utiliza todos os algarismos (1 a 9) de uma vez, pois serão formados números de 4 algarismos, é um arranjo.
Você pode resolver este exercício, encontrando os números que terminam em 0, 2, 4, 6 ou 8.
Seria também interessante encontrar os números que terminam em 0 primeiro, pois o número formado não poderá começar com 0.
1º caso (terminando em 0):_ _ _ 1 \Rightarrow 9_ _ 1 \Rightarrow 9.8.7.1 = 504
2º caso (terminando em 2, 4, 6 ou 8):_ _ _ 4 \Rightarrow 8 _ _ 4 (a primeira casa deve conter um número diferente do da última e diferente de 0. 10 - 2 = 8)
\Rightarrow 8 8 _ 4 (a segunda casa deve ser diferente dos algarismos da última casa e da primeira casa, mas pode conter o zero. 8 - 1 + 1 = 8) \Rightarrow 8.8.7.4 = 1.792
Somando \Rightarrow 504 + 1.792 = 2.296
Qualquer dúvida... :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números Pares

Mensagempor Andreza » Seg Jan 23, 2012 17:12

Muito obrigada, eu entendi perfeitamente.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}