• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule o valor de m na equação matricial A*X=B

Calcule o valor de m na equação matricial A*X=B

Mensagempor andersontricordiano » Seg Jan 16, 2012 19:46

Para que valores reais de m a equação matricial A * X = B em que , A=\begin{pmatrix}
   2 & 1& -1  \\ 
   0 & 1& 1 \\ 
   -4&0&m \end{pmatrix} , X=\begin{pmatrix}
   {x}_{1}   \\ 
   {x}_{2} \\
{x}_{3} 
\end{pmatrix} e B=\begin{pmatrix}
   0   \\ 
   0 \\
0 
\end{pmatrix} admite uma única solução \begin{vmatrix}
   {x}_{1} & {x}_{2} &{x}_{3} \\ 
    
\end{vmatrix}?
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule o valor de m na equação matricial A*X=B

Mensagempor Arkanus Darondra » Seg Jan 16, 2012 20:37

Olá andersontricordiano.
Você tem a resposta do gabarito? Encontrei x \not= 4 mas não tenho certeza.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Calcule o valor de m na equação matricial A*X=B

Mensagempor andersontricordiano » Qua Jan 18, 2012 16:01

sim a resposta é X diferente de 4
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule o valor de m na equação matricial A*X=B

Mensagempor Arkanus Darondra » Qua Jan 18, 2012 23:52

andersontricordiano escreveu:Para que valores reais de m a equação matricial A * X = B em que , A=\begin{pmatrix}
   2 & 1& -1  \\ 
   0 & 1& 1 \\ 
   -4&0&m \end{pmatrix} , X=\begin{pmatrix}
   {x}_{1}   \\ 
   {x}_{2} \\
{x}_{3} 
\end{pmatrix} e B=\begin{pmatrix}
   0   \\ 
   0 \\
0 
\end{pmatrix} admite uma única solução \begin{vmatrix}
   {x}_{1} & {x}_{2} &{x}_{3} \\ 
    
\end{vmatrix}?


A.X=B \Rightarrow \begin{pmatrix} 2 & 1& -1  \\ 0 & 1& 1 \\ -4&0&m \end{pmatrix}.\begin{pmatrix}{x}_{1} \\ {x}_{2} \\ {x}_{3}\end{pmatrix} = \begin{pmatrix}0   \\  0 \\ 0 \end{pmatrix}\Rightarrow \begin{pmatrix}2x_1 + x_2 - x_3 \\ 0x_1 + x_2 + x_3 \\ -4x_1 + 0x_2 + mx_3\end{pmatrix} = \begin{pmatrix}0   \\  0 \\ 0 \end{pmatrix} \Rightarrow $ \left\{\begin{array}{lll}\displaystyle }2x_1 + x_2 - x_3 = 0 (2L1 + L3) \\\displaystyle 0x_1 + x_2 + x_3 = 0 \\\displaystyle  -4x_1 + 0x_2 + mx_3 = 0\end{array}\right \Rightarrow $ \left\{\begin{array}{lll}\displaystyle }2x_1 + x_2 - x_3 = 0 \\\displaystyle 0x_1 + x_2 + x_3 = 0 (-2L2 + L3) \\\displaystyle  0x_1 + 2x_2 + -2x_3 + mx_3 = 0\end{array}\right \Rightarrow
$ \left\{\begin{array}{lll}\displaystyle }2x_1 + x_2 - x_3 = 0 \\\displaystyle 0x_1 + x_2 + x_3 = 0  \\\displaystyle  0x_1 + 0x_2 + -4x_3 + mx_3 = 0\end{array}\right
Para o sistema possuir uma única solução, ele deve ser um SPD, portanto, a última linha não pode ser nula.
0x_1 + 0x_2 + -4x_3 + mx_3 \not= 0 \Rightarrow x_3(-4 + m) \not= 0\Rightarrow x_3 \not= 0 e -4 + m \not= 0
Como ele só pode os valor de m \Rightarrow m \not= 4
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}