por pipinha1982 » Ter Jan 10, 2012 18:17
boa noite gostria que me ajudasem a resolver
1.
Resolva as seguintes inequac~oes:
a)
|2-3x|<|x-3|
b)
|x-2|<=|x|-2
c)
|x-2|<|x|+2
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por ant_dii » Qua Jan 11, 2012 02:48
Vou deixar a dica... Tente e depois em caso de dúvidas corra novamente ao fórum...
Sempre que

, teremos que

(valendo isso caso seja

), contando que

e

são números reais.
Obs.: mas veja que se fosse

ou

a relação seria outra. Qual?
No seu caso

, então

e daí você terá que estudar cada caso separado, ou seja,

e

e, por fim, fazer as devidas interseções dos conjuntos que satisfazem as relações.
Há também o caso

(

um número real), onde deverá ser feito

.
O resto é somente um pouco de esforço com a manipulação algébrica e interpretação dos conjuntos que satisfazem cada relação.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por pipinha1982 » Qua Jan 11, 2012 10:38
entao mas nao tenho de elevar cada modulo ao quadrado? :( nao pesco nada disto se me poder ajudar
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por gicapo » Qua Jan 11, 2012 11:57
pipinha1982 escreveu:entao mas nao tenho de elevar cada modulo ao quadrado? :( nao pesco nada disto se me poder ajudar
Pipinha vê o tópico Inequações e a alinea a) está lá resolvida
tenta depois a alinea b) e a C) que eu tb preciso.
GICAPO
-
gicapo
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 09, 2012 09:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão
- Andamento: cursando
por pipinha1982 » Qua Jan 11, 2012 14:53
oi gicago tens messenger?
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por gicapo » Qua Jan 11, 2012 14:57
pipinha1982 escreveu:oi gicago tens messenger?
Sim
gicapo@hotmail.com
-
gicapo
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 09, 2012 09:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão
- Andamento: cursando
por pipinha1982 » Qua Jan 11, 2012 14:58
ja te adicionei
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por pipinha1982 » Qua Jan 11, 2012 14:59
ja te adicionei
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por pipinha1982 » Qua Jan 11, 2012 15:05
gicago estas online no messenger?
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por pipinha1982 » Qua Jan 11, 2012 15:23
boa tarde ant_dii
sera que me podia ajudar na resolucao das inequacoes
?
obrigado
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por ant_dii » Qua Jan 11, 2012 15:38
Sim posso sim, inclusive acabei de resolver a primeira...
Mas agora tenho que ir trabalhar, assim que voltar eu mostro como se faz.
Caso queira tentar, o resultado da primeira, ou seja, o conjunto que satisfaz a primeira inequação é

onde

é o conjunto dos números reais
Prometo que volto depois...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por pipinha1982 » Qua Jan 11, 2012 19:04
boa noite
preciso urgentemente de ajuda tenho 3 exercicios aos qauis nao consigo resolver alguem me pode ajudar
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
por ant_dii » Qui Jan 12, 2012 00:55
Agora vamos lá...
Para a letra a teremos

Agora façamos cada caso particularmente. Primeiro


De (1), temos que:

De (2), temos que:

Assim temos que

se

ou

, ou seja, se

.
Por outro lado, temos que

:

De (3), temos que:

De (4), teremos

Logo,

se

ou

, ou seja, se

.
Portanto,

se

e

, ou seja, se

.
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por ant_dii » Qui Jan 12, 2012 02:37
Outro modo é fazendo:

A equação

possui raízes em

e em

(encontradas utilizando a fórmula de Bhaskara).
Logo,

.
Mas isso implica que

(1) e

(2)
ou

(3) e

(4).
De (1),

De (2),

Então,

De (3),

De (4),

Então, não haverá interesecção, ou seja, nos intervalos

e

, a inequação

será falsa.
Portanto a solução estará no intervalo (conjunto)

...
De toda forma enfatizo que o método utilizado na primeira vez (vez anterior) é mais garantido, porém mais trabalhoso...
Esta solução é mais rápida e poderá ser usada no problemas da letra c, como segue abaixo:
Observando, na letra c, que

poderemos fazer o seguinte (atenção nos passos)

Portanto,

se

.
Já para b, tentei o processo e acontece o seguinte:

fazendo, como antes,

o que é verdadeiro para qualquer

real.
Mas como estamos trabalhando com módulo teremos que

sempre, ou seja,

.
Em caso de dúvida, basta observar que

não pode ser negativo. Assim sendo

Se praticar bastante o outro método, ele lhe cairá melhor do que o método de elevar ao quadrado. Este último pode te levar a entendimentos errôneos..
Espero ter ajudado...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por ant_dii » Qui Jan 12, 2012 14:43
pipinha1982 escreveu:boa tarde ant_dii
sera que me podia ajudar na resolucao das inequacoes
?
obrigado
E aí pipinha1982, apareceu alguma dúvida? Pergunto, pois sei que este tópico exige muito...
Aguardo retorno...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequações
por Bruno 888 » Qua Set 24, 2008 20:36
- 1 Respostas
- 4101 Exibições
- Última mensagem por admin

Ter Set 30, 2008 17:09
Inequações
-
- Inequações
por Rose » Seg Nov 24, 2008 22:44
- 2 Respostas
- 3602 Exibições
- Última mensagem por Rose

Qua Nov 26, 2008 08:18
Inequações
-
- Inequações
por cristina » Seg Set 07, 2009 01:46
- 2 Respostas
- 2808 Exibições
- Última mensagem por cristina

Seg Set 07, 2009 20:55
Sistemas de Equações
-
- inequações
por jose henrique » Ter Out 26, 2010 23:56
- 10 Respostas
- 6481 Exibições
- Última mensagem por MarceloFantini

Qui Nov 04, 2010 10:31
Sistemas de Equações
-
- Inequações
por brijahh » Sáb Ago 06, 2011 10:38
- 1 Respostas
- 2097 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 06, 2011 17:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.