por Jorge Dias » Seg Jan 09, 2012 15:45
f(u,v,W)

calcular as primeiras derivadas e o seu gradiente,encontrar um ponto onde f se anule ou não.
vou considerar cos(u-v) como um todo e é cos (x) ou vou ter que dizer que cos(u-v)= cosu.cosv+sinu.sinv e tambem não sei o que faço com o -1.
E no denominador tenho de fazer o mesmo? colocar as equivalências trignométricas ou não? faço a derivação do quociente directamente, mas novamente tenho de achar as 3 derivadas de cada vez,não consigo encontrar nada que me explique isso em condições estou feito.
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por fraol » Seg Jan 09, 2012 17:20
Boa tarde,
Antes de mais nada lembre-se que é a derivada de um quociente, então aplicar a dita regra (derivada do quociente entre duas funções) para cada uma das derivadas parciais em u, V e W.
Além da identidade

, você vai precisar também de

.
O resto é manipulação algébrica.
Quer tentar?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por LuizAquino » Seg Jan 09, 2012 18:32
Não precisa aplicar as identidades trigonométricas.
Basta usar a regra da cadeia.
Por exemplo, suponha que você tivesse apenas a função

.
Para derivar em relação a x, imagine que a função fosse

(isto é, depende apenas de x).
Desse modo, temos que
![\frac{\partial f}{\partial x} = \frac{d g}{d x} = \left[-\textrm{sen}\,(x-y) \right] \cdot \frac{d}{d x}(x-y) = \left[-\textrm{sen}\,(x-y) \right] \cdot 1 = -\textrm{sen}\,(x-y) \frac{\partial f}{\partial x} = \frac{d g}{d x} = \left[-\textrm{sen}\,(x-y) \right] \cdot \frac{d}{d x}(x-y) = \left[-\textrm{sen}\,(x-y) \right] \cdot 1 = -\textrm{sen}\,(x-y)](/latexrender/pictures/d4e032097c25fbdb93f3e7e09020f00c.png)
Por outro lado, para derivar em relação a y, imagine que a função fosse

(isto é, depende apenas de y).
Desse modo, temos que
![\frac{\partial f}{\partial y} = \frac{d g}{d y} = \left[-\textrm{sen}\,(x-y) \right] \cdot \frac{d}{d y}(x-y) = \left[-\textrm{sen}\,(x-y) \right] \cdot (-1) = \textrm{sen}\,(x-y) \frac{\partial f}{\partial y} = \frac{d g}{d y} = \left[-\textrm{sen}\,(x-y) \right] \cdot \frac{d}{d y}(x-y) = \left[-\textrm{sen}\,(x-y) \right] \cdot (-1) = \textrm{sen}\,(x-y)](/latexrender/pictures/604e3d42e14dbcd7e48ffd2b9a62078b.png)
Agora basta aplicar essa ideia. Mas lembre-se que, como
fraol disse, você precisa aplicar também a regra do quociente para derivar a função de seu exercício.
ObservaçãoSe você desejar revisar a regra da cadeia, então eu recomendo que você assista a vídeo-aula "13. Cálculo I - Regra da Cadeia" disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Jorge Dias » Ter Jan 10, 2012 09:26
Obrigado pelas dicas ajudou bastante.
-
Jorge Dias
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jan 06, 2012 23:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em gestão
- Andamento: cursando
por pipinha1982 » Qua Jan 11, 2012 15:18
boa tarde alguem me pode ajudar a resolver o exercicio que o colega jorge colocou pois nao consigo perceber
obrigado
-
pipinha1982
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Jan 10, 2012 16:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: gestao
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida em trignometrica 11 ano do ensino secundário
por Beatriz17 » Sáb Out 14, 2017 08:06
- 0 Respostas
- 1903 Exibições
- Última mensagem por Beatriz17

Sáb Out 14, 2017 08:06
Trigonometria
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10374 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10632 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 12843 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14349 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.