• Anúncio Global
    Respostas
    Exibições
    Última mensagem

congruência

congruência

Mensagempor hatsurei » Ter Set 13, 2011 11:09

Olá,
Estou estudando sobre congruência e nao consigo entender o assunto e nem resolver a questao abaixo:

Questão 3:
a) Ache o resto na divisão de 2^45 por 7
b) Ache o resto da divisão de 11^10 por 100
c) Mostre que 2^20-1 é divisível por 41
d) Sabendo que 402= 654(mod m), determine os possíveis valores de m.
e) Mostre que 45^10 é divisível por 5

Por favor, se alguem puder resolver e deixar o calculo para estudo para mim eu agradeço e tambem se soube de algum material que me ajude a entender o assunto ficaria muito grato mesmo.
hatsurei
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 13, 2011 10:55
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: congruência

Mensagempor ronaldoh » Qui Jan 05, 2012 17:26

Questão 3:
a) Ache o resto na divisão de 2^45 por 7
Ora, se 2^3\equiv 1 mod 7, então 2^3^15 \equiv 1^15 mod 7.
Portanto o resto é 1^15, ou simplesmente 1.

b)Resolução:
1110 – 1 = (11 – 1)(119 + 118 + 117 + ... + 112 + 11 + 1) => 11^10 – 1 = 10.(119 + 118 + 117 + ... + 112 + 11 + 1)
Basta provar que (119 + 118 + 117 + ... + 112 + 11 + 1) é divisível por 10.
=>11 \equiv 1 (mod. 10) => 1 \equiv 11 \equiv 112 \equiv 113 \equiv 114 \equiv ... \equiv 118 \equiv 119 \equiv 1 (mod. 10)
Somando temos: 119 + 118 + 117 + ... + 112 + 11 + 1 º 1 + 1 + 1 + ... + 1 (mod. 10) =>
119 + 118 + 117 + ... + 112 + 11 + 1 \equiv10 (mod. 10) => 119 + 118 + 117 + ... + 112 + 11 + 1 \equiv 0 (mod. 10)
portanto o resto é 0.

c) 27 = 128 = 3.41 + 5 => 27 \equiv 5 (mod. 41) => 2^3.2^7 \equiv 2^3.5 (mod. 41) => 210^\equiv 40 (mod. 41) =>
2^10 \equiv – 1 (mod. 41) => (210)^^2 \equiv (– 1)2 (mod. 41) => 220^\equiv 1 (mod. 41) \equiv 41 | 220 – 1


e) se 45 \equiv 0 mod 5, então 45^10 \equiv 5^10 mod 5. Mas evidentemente 5 | 5^10
ronaldoh
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 05, 2012 16:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}