• Anúncio Global
    Respostas
    Exibições
    Última mensagem

congruência

congruência

Mensagempor hatsurei » Ter Set 13, 2011 11:09

Olá,
Estou estudando sobre congruência e nao consigo entender o assunto e nem resolver a questao abaixo:

Questão 3:
a) Ache o resto na divisão de 2^45 por 7
b) Ache o resto da divisão de 11^10 por 100
c) Mostre que 2^20-1 é divisível por 41
d) Sabendo que 402= 654(mod m), determine os possíveis valores de m.
e) Mostre que 45^10 é divisível por 5

Por favor, se alguem puder resolver e deixar o calculo para estudo para mim eu agradeço e tambem se soube de algum material que me ajude a entender o assunto ficaria muito grato mesmo.
hatsurei
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 13, 2011 10:55
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: congruência

Mensagempor ronaldoh » Qui Jan 05, 2012 17:26

Questão 3:
a) Ache o resto na divisão de 2^45 por 7
Ora, se 2^3\equiv 1 mod 7, então 2^3^15 \equiv 1^15 mod 7.
Portanto o resto é 1^15, ou simplesmente 1.

b)Resolução:
1110 – 1 = (11 – 1)(119 + 118 + 117 + ... + 112 + 11 + 1) => 11^10 – 1 = 10.(119 + 118 + 117 + ... + 112 + 11 + 1)
Basta provar que (119 + 118 + 117 + ... + 112 + 11 + 1) é divisível por 10.
=>11 \equiv 1 (mod. 10) => 1 \equiv 11 \equiv 112 \equiv 113 \equiv 114 \equiv ... \equiv 118 \equiv 119 \equiv 1 (mod. 10)
Somando temos: 119 + 118 + 117 + ... + 112 + 11 + 1 º 1 + 1 + 1 + ... + 1 (mod. 10) =>
119 + 118 + 117 + ... + 112 + 11 + 1 \equiv10 (mod. 10) => 119 + 118 + 117 + ... + 112 + 11 + 1 \equiv 0 (mod. 10)
portanto o resto é 0.

c) 27 = 128 = 3.41 + 5 => 27 \equiv 5 (mod. 41) => 2^3.2^7 \equiv 2^3.5 (mod. 41) => 210^\equiv 40 (mod. 41) =>
2^10 \equiv – 1 (mod. 41) => (210)^^2 \equiv (– 1)2 (mod. 41) => 220^\equiv 1 (mod. 41) \equiv 41 | 220 – 1


e) se 45 \equiv 0 mod 5, então 45^10 \equiv 5^10 mod 5. Mas evidentemente 5 | 5^10
ronaldoh
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 05, 2012 16:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59