por TiagoFERD » Dom Dez 25, 2011 08:05
Bom dia! sou novo por aqui.
Espero que alguem me ajude em uma dúvida sobre subespaço vectorial.
Na solução do livro diz que não é um Subespaço Vectorial, mas eu verifiquei e a mim deu um subespaço.
Aqui está a imagem.
Muito Obrigado.
-
TiagoFERD
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Out 23, 2011 04:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por fraol » Dom Dez 25, 2011 10:59
Oi TIago,
No teste 1 você está certo, pois

então

.
No teste 2 não, pois

então

nem sempre é maior do que ou igual a 0. Por quê?
Bom natal,
Francisco.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por TiagoFERD » Seg Dez 26, 2011 13:09
fraol escreveu:Oi TIago,
No teste 1 você está certo, pois

então

.
No teste 2 não, pois

então

nem sempre é maior do que ou igual a 0. Por quê?
Bom natal,
Francisco.
Boas Francisco muito Obrigado e bom Natal para você também.
bem será porque o resposta é porque ou será zero ou maior do que zero?
não sei se entendi...
Obrigado
-
TiagoFERD
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Out 23, 2011 04:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por fraol » Seg Dez 26, 2011 14:29
Olá Tiago,
Para ser um subespaço vetorial é necessário que se preserve a soma dos vetores e a multiplicação por escalar. Isto é:
1) A soma de 2 vetores quaisquer do subespaço deve dar um vetor também pertencente ao subespaço.
Isso nós vimos que sempre acontece pois como a única restrição é o
a >= 0 então sempre que somarmos dois vetores vamos obter um terceiro cujo
a correspondente será sempre >= 0.
2) A multiplicação de um vetor qualquer do subespaço por um número real (alfa) deve dar um vetor também pertencente ao subespaço.
Neste caso, se tomamos um alfa negativo, então o
a correspondente do novo vetor será negativo e aí não satisfaz a restrição do subespaço. Ou seja

é negativo se o

.
Se não tiver entendido manda de volta que a gente vai conversando...
Até mais,
Francisco.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por TiagoFERD » Seg Dez 26, 2011 14:34
fraol escreveu:Olá Tiago,
Para ser um subespaço vetorial é necessário que se preserve a soma dos vetores e a multiplicação por escalar. Isto é:
1) A soma de 2 vetores quaisquer do subespaço deve dar um vetor também pertencente ao subespaço.
Isso nós vimos que sempre acontece pois como a única restrição é o
a >= 0 então sempre que somarmos dois vetores vamos obter um terceiro cujo
a correspondente será sempre >= 0.
2) A multiplicação de um vetor qualquer do subespaço por um número real (alfa) deve dar um vetor também pertencente ao subespaço.
Neste caso, se tomamos um alfa negativo, então o
a correspondente do novo vetor será negativo e aí não satisfaz a restrição do subespaço. Ou seja

é negativo se o

.
Se não tiver entendido manda de volta que a gente vai conversando...
Até mais,
Francisco.
Boas fraol, não tinha pensado no caso do alfa menor que 0! que cabeça!! :( muito obrigado.
bom natal
-
TiagoFERD
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Out 23, 2011 04:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Subespaço Vetorial] Subespaço envolvendo matrizes
por hyge » Qua Mai 02, 2018 17:04
- 2 Respostas
- 10683 Exibições
- Última mensagem por adauto martins

Dom Mai 06, 2018 12:28
Álgebra Linear
-
- [Subespaço Vetorial] Verificar que é o conjunto é subespaço
por anderson_wallace » Seg Dez 30, 2013 17:56
- 3 Respostas
- 4426 Exibições
- Última mensagem por Renato_RJ

Ter Dez 31, 2013 14:00
Álgebra Linear
-
- subespaço
por alzenir agapito » Qui Jul 21, 2011 17:52
- 0 Respostas
- 1678 Exibições
- Última mensagem por alzenir agapito

Qui Jul 21, 2011 17:52
Álgebra
-
- subespaço vetorial
por leobcastro » Seg Jun 16, 2008 10:18
- 8 Respostas
- 26566 Exibições
- Última mensagem por Heidji

Qua Jan 27, 2010 23:16
Geometria Analítica
-
- Exercício de subespaço
por ClaudianeLoira » Qua Jun 18, 2008 00:29
- 1 Respostas
- 1772 Exibições
- Última mensagem por admin

Qua Jun 18, 2008 03:22
Tópicos sem Interação (leia as regras)
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.