• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LÓGICA] Sei que tá certo, mas não consigo provar

[LÓGICA] Sei que tá certo, mas não consigo provar

Mensagempor v0xxx » Sáb Dez 10, 2011 13:13

Pensando numa solução pra um programa de computador cheguei a esta conclusão e funcionou perfeitamente. Mas gostaria de prová-la formalmente mas não tô conseguindo, se alguém ajudar eu agradeço. Segue a proposição:

\forall x,y \in R\:(|x+y| < |x|  \Rightarrow ((x<0) and (y>0))\:or\:((x>0) and (y<0)))

Basicamente o que diz é: Se a soma do módulo de 2 números reais for menor que o módulo do 1º deles, então os números tem sinais contrários.

Como disse, está certo, mentalmente eu consigo provar, mas formalmente não consigo :D
v0xxx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 10, 2011 12:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Tecnologia da Informação
Andamento: cursando

Re: [LÓGICA] Sei que tá certo, mas não consigo provar

Mensagempor MarceloFantini » Dom Dez 11, 2011 04:00

Primeiro você quer dizer o módulo da soma, e não "soma do módulo de dois números reais", que seria algo como |x| + |y|. A condição de que tem sinais opostos pode ser simplificada para xy < 0, ou seja, o produto é negativo.

Por último, não menos importante, um contra-exemplo: faça x=-2 e y=8. Então |x+y| = |-2+8| = |6| = 6 enquanto que |x| = |-2| = 2. Na verdade o que você provavelmente quer dizer é que se o módulo da soma for menor que o máximo dentre os dois, então eles tem sinais opostos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LÓGICA] Sei que tá certo, mas não consigo provar

Mensagempor v0xxx » Dom Dez 11, 2011 17:18

MarceloFantini escreveu:Primeiro você quer dizer o módulo da soma, e não "soma do módulo de dois números reais", que seria algo como |x| + |y|. A condição de que tem sinais opostos pode ser simplificada para xy < 0, ou seja, o produto é negativo.

Por último, não menos importante, um contra-exemplo: faça x=-2 e y=8. Então |x+y| = |-2+8| = |6| = 6 enquanto que |x| = |-2| = 2. Na verdade o que você provavelmente quer dizer é que se o módulo da soma for menor que o máximo dentre os dois, então eles tem sinais opostos.


Exato, é o módulo da soma, eu me enganei. E de fato a lógica está um pouquinho errada. O certo certo é:
Se o módulo da soma for menor que o maior deles em módulo então eles tem sinais contrários :D (porque se fosse |-8+2|=6, que seria menor que |-8|)

Muito obrigado!!!
v0xxx
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 10, 2011 12:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Tecnologia da Informação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D