• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] comprimmento de arco por integral

[calculo] comprimmento de arco por integral

Mensagempor beel » Dom Nov 27, 2011 21:00

Pra achar o comprimento da curva( y=\frac{2}{3}(x-1)^2^/^3 ) que vai do ponto (1,0) a (2,2/3)
fiz
\int_{a}^{b}\sqrt[]{1+f\prime(x)^2}dx
f'(x^)² = \frac{16}{81\sqrt[3]{(x-1)^2}},
ai preciso resolver essa integral, mas como acho a primitiva disso pra resolver?
e quais seriam os limites de integração?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] comprimmento de arco por integral

Mensagempor TheoFerraz » Seg Nov 28, 2011 14:38

os limites de integração seriam os valores do eixo x de cada ponto.

achar a primitiva pode ser meio complicado, o que voce pode fazer é ir no site www.wolframalpha.com

e digitar no box:

integrate {função que quero integrar}


Exemplo:

integrate 1/(x-2)

depois clique no botão "Show steps" ele te mostrará todos os passos que usou para calcular a integral.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [calculo] comprimmento de arco por integral

Mensagempor beel » Ter Nov 29, 2011 16:56

O problema é se cair isso numa prova, ai estou lascada (:
nao tem como simplificar ou alguma coisa do tipo?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] comprimmento de arco por integral

Mensagempor TheoFerraz » Ter Nov 29, 2011 17:36

O site que eu passei não daria a resposta de mão beijada simplesmente. ele daria justamente o que voce quer, as simplificações necessárias.... Todas as trocas de variável que se deve fazer uma por uma e todo o processo descrito!

ao clicar no botão "show steps" ele mostrará os passos utilizados, todas as simplificações.

Eu não faço aqui pois essa integral vai demorar uma vida pra escrever aqui no forum! faz mais sentido voce ir lá e ver os passos. mas se fizer questão eu faço...
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [calculo] comprimmento de arco por integral

Mensagempor beel » Dom Dez 04, 2011 21:30

aaa sim...nao,nao é necessario, obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.