• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] integral definida com exponencial

[calculo] integral definida com exponencial

Mensagempor beel » Dom Nov 20, 2011 22:38

\int_{2}^{3} \frac{e^1^/^x}{x^2}dx, nessa integral,fiz por substituiçao e tomei o "u" como 1/x...
so fiquei em duvida no final...eu substitui os extremos da integrada e meu resultado deu
e^1/2 - e^1/3...se nao substituir os extremos a resposta seria e^2-e^3 e tem essa opçao como resposta
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral definida com exponencial

Mensagempor LuizAquino » Seg Nov 21, 2011 09:58

beel escreveu:\int_{2}^{3} \frac{e^{1/x}}{x^2} dx, nessa integral,fiz por substituiçao e tomei o "u" como 1/x...
so fiquei em duvida no final...eu substitui os extremos da integrada e meu resultado deu
e^1/2 - e^1/3...se nao substituir os extremos a resposta seria e^2-e^3 e tem essa opçao como resposta


Para conferir sua resolução, siga os procedimentos abaixo.

Parte 1) Estudar o desenvolvimento de \int \frac{e^{1/x}}{x^2} dx .

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate e^(1/x)/(x^2) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.

Parte 2) Calcular o valor de \int_2^3 \frac{e^{1/x}}{x^2} dx .

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate e^(1/x)/(x^2) dx x=2..3
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após o processamento irá aparecer o valor dessa integral definida.
  5. Pronto! Agora basta comparar o valor com o resultado obtido por você.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] integral definida com exponencial

Mensagempor beel » Ter Nov 22, 2011 15:50

uma pergunta,
e^1^/^2=\sqrt[]{e}, e e^1^/^3=\sqrt[3]{e}?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral definida com exponencial

Mensagempor LuizAquino » Ter Nov 22, 2011 16:55

beel escreveu:uma pergunta,
e^{1/2} = \sqrt{e}, e e^{1/3} = \sqrt[3]{e} ?


Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}