• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] integral definida com exponencial

[calculo] integral definida com exponencial

Mensagempor beel » Dom Nov 20, 2011 22:38

\int_{2}^{3} \frac{e^1^/^x}{x^2}dx, nessa integral,fiz por substituiçao e tomei o "u" como 1/x...
so fiquei em duvida no final...eu substitui os extremos da integrada e meu resultado deu
e^1/2 - e^1/3...se nao substituir os extremos a resposta seria e^2-e^3 e tem essa opçao como resposta
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral definida com exponencial

Mensagempor LuizAquino » Seg Nov 21, 2011 09:58

beel escreveu:\int_{2}^{3} \frac{e^{1/x}}{x^2} dx, nessa integral,fiz por substituiçao e tomei o "u" como 1/x...
so fiquei em duvida no final...eu substitui os extremos da integrada e meu resultado deu
e^1/2 - e^1/3...se nao substituir os extremos a resposta seria e^2-e^3 e tem essa opçao como resposta


Para conferir sua resolução, siga os procedimentos abaixo.

Parte 1) Estudar o desenvolvimento de \int \frac{e^{1/x}}{x^2} dx .

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate e^(1/x)/(x^2) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.

Parte 2) Calcular o valor de \int_2^3 \frac{e^{1/x}}{x^2} dx .

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate e^(1/x)/(x^2) dx x=2..3
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após o processamento irá aparecer o valor dessa integral definida.
  5. Pronto! Agora basta comparar o valor com o resultado obtido por você.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] integral definida com exponencial

Mensagempor beel » Ter Nov 22, 2011 15:50

uma pergunta,
e^1^/^2=\sqrt[]{e}, e e^1^/^3=\sqrt[3]{e}?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral definida com exponencial

Mensagempor LuizAquino » Ter Nov 22, 2011 16:55

beel escreveu:uma pergunta,
e^{1/2} = \sqrt{e}, e e^{1/3} = \sqrt[3]{e} ?


Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.