• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Problema com prova: f par --> f' ímpar

[Derivadas] Problema com prova: f par --> f' ímpar

Mensagempor Imscatman » Qui Nov 17, 2011 14:04

Olá!

Tenho duas dúvidas com a prova de f(x) = f(-x) implica f'(-x) = -f'(x) (isto é, que se f é par, então sua derivada f' é ímpar).

Lembrando que:

f'(x)=\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h}

A prova começa assim:

f'(-x)=\lim_{h\rightarrow0}\frac{f(-x+h)-f(-x)}{h}

Mas aqui eu já tenho a primeira dúvida: se em f'(x) o h é na verdade algo como {x}_{0}-x, como eu posso fazer f'(-x) substituindo x por -x na expressão original, mas sem tocar no h? Parece-me que h passaria a ser {x}_{0}+x, mas então deixaria de ser h.

Engolindo isso, a prova continua. Terei uma segunda dúvida. Continuando, há esses passos:

f'(-x)=\lim_{h\rightarrow0}\frac{f[-(x-h)]-f(-x)}{h}=\lim_{h\rightarrow0}\frac{f(x-h)-f(x)}{h}

Aqui ok: como a função é par, os f(-a) ficaram f(a) acima. E a seguir introduz-se um sinal de menos dentro e fora do limite. Ok também:

=-\lim_{h\rightarrow0}\frac{f(x-h)-f(x)}{-h}

E nesse ponto toma-se -h = \Delta x e faz-se:

=-\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

Isso é -f'(x), concluindo a prova. Mas - segunda dúvida - me incomoda que, no símbolo de limite, a substituição seja h = \Delta x em vez de -h = \Delta x. Isso não deveria fazer diferença? Não ficaria -\lim_{-\Delta x\rightarrow0} ali?

Agradeço a quem puder me ajudar.

P. S.: tirei essa demonstração do livro (e-book) de respostas do Cálculo vol. 6 (James Stewart).

Atualizado: já posso ver que tanto faz colocar \Delta x ou -\Delta x no limite, porque se um tende a zero, o outro também. Essa é a explicação da segunda dúvida, certo? A primeira dúvida permanece. Pensando aqui...
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Derivadas] Problema com prova: f par --> f' ímpar

Mensagempor LuizAquino » Sex Nov 18, 2011 21:44

Imscatman escreveu:(...)
A prova começa assim:

f'(-x)=\lim_{h\to 0}\frac{f(-x+h)-f(-x)}{h}

Mas aqui eu já tenho a primeira dúvida: se em f'(x) o h é na verdade algo como {x}_{0}-x, como eu posso fazer f'(-x) substituindo x por -x na expressão original, mas sem tocar no h? Parece-me que h passaria a ser {x}_{0}+x, mas então deixaria de ser h.
(...)


Você já sabe que uma forma de definir f^\prime(x) é :

f^\prime(x) = \lim_{u\to x}\frac{f(u)-f(x)}{u-x}

Note que x representa qualquer valor no domínio de f. Suponha então que há um número negativo nesse domínio, por exemplo o valor -a.

A expressão anterior para x=-a teria o formato:

f^\prime(-a) = \lim_{u\to -a}\frac{f(u)-f(-a)}{u-(-a)}

Faça então a mudança de variável h = u - (-a) (que é o mesmo que h = u + a ). Note que quando u\to -a, temos que h\to 0. Sendo assim, podemos reescrever a expressão anterior como:

f^\prime(-a) = \lim_{h\to 0}\frac{f(-a+h) - f(-a)}{h}

Agora siga um raciocínio semelhante considerando que o número negativo no domínio seja -x.

Imscatman escreveu:(...)
=-\lim_{h\rightarrow0}\frac{f(x-h)-f(x)}{-h}

E nesse ponto toma-se -h = \Delta x e faz-se:

=-\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

Isso é -f'(x), concluindo a prova. Mas - segunda dúvida - me incomoda que, no símbolo de limite, a substituição seja h = \Delta x em vez de -h = \Delta x. Isso não deveria fazer diferença? Não ficaria -\lim_{-\Delta x\rightarrow0} ali?
(...)


Imscatman escreveu:Atualizado: já posso ver que tanto faz colocar \Delta x ou -\Delta x no limite, porque se um tende a zero, o outro também. Essa é a explicação da segunda dúvida, certo?


Ao fazer a substituição -h = \Delta x, note que quando h\to 0, temos que \Delta x \to 0 . Por isso não há problema algum escrever que:

-\lim_{h\to 0}\frac{f(x-h)-f(x)}{-h} = -\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas] Problema com prova: f par --> f' ímpar

Mensagempor Imscatman » Sáb Nov 19, 2011 08:40

Muito obrigado outra vez, professor! Tudo encaixa. ;)
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.