• Anúncio Global
    Respostas
    Exibições
    Última mensagem

senx

senx

Mensagempor camilaarbar » Qua Mai 13, 2009 21:57

Sabendo que sen x = 2 cos x e 0<x>pi /2, calcule
a) SEN 2X
eu tentei fazer através da fórmula sen 2x = 2sen x *cos x
sen 2x = 2 (2 cos x ) * cos x
sen 2x = 4 cos x * cos x
sen 2x = 4 cos ²x
e fui seguindo até chegar em baskara que naum dá o resultado certo
camilaarbar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 13, 2009 21:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: senx

Mensagempor Molina » Qua Mai 13, 2009 22:58

Boa noite, Camila.

Não entendi a última frase. Chegar em Báskara?
Acho que não é necessário.

Acho que até onde você chegou está certo.
Qual o resultado do gabarito?

O que você poderia fazer é substituir esse cos^2 x por algo em função de seno.
Para isso use a fórmula cos^2 x + sen^2 x = 1

Depois só confirma pra mim o gabarito, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: senx

Mensagempor camilaarbar » Qui Mai 14, 2009 21:51

a resposta certa eh raiz 10 /10
camilaarbar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 13, 2009 21:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: senx

Mensagempor Cleyson007 » Sáb Mai 16, 2009 15:24

Boa tarde!

Aplicando a "Relação Fundamental da Trigonometria": {sen}^{2}x+{cos}^{2}x=1 encontramos:

Como senx=2cosx

(2cosx)²+cos²x=1 Resolvendo: cosx=\frac{\sqrt[2]{5}}{5}

Pelo mesmo princípio, tem-se que o senx=\frac{\sqrt[2]{5}}{5}

Como a questão pede sen2x, veja que é o mesmo que: 2cosx.senx. Como o cosseno e o seno de x é igual a \frac{\sqrt[2]{5}}{5} é só substituí-los.

2cosx.senx= 2\frac{\sqrt[2]{5}}{5}*\frac{\sqrt[2]{5}}{5}

Encontrando como resposta \frac{2}{5}

A resposta não está igual ao seu gabarito, mas não consegui encontrar erro no raciocínio acima.

Se alguém encontrar algum erro por favor comente :)

Espero ter ajudado.

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59