• Anúncio Global
    Respostas
    Exibições
    Última mensagem

senx

senx

Mensagempor camilaarbar » Qua Mai 13, 2009 21:57

Sabendo que sen x = 2 cos x e 0<x>pi /2, calcule
a) SEN 2X
eu tentei fazer através da fórmula sen 2x = 2sen x *cos x
sen 2x = 2 (2 cos x ) * cos x
sen 2x = 4 cos x * cos x
sen 2x = 4 cos ²x
e fui seguindo até chegar em baskara que naum dá o resultado certo
camilaarbar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 13, 2009 21:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: senx

Mensagempor Molina » Qua Mai 13, 2009 22:58

Boa noite, Camila.

Não entendi a última frase. Chegar em Báskara?
Acho que não é necessário.

Acho que até onde você chegou está certo.
Qual o resultado do gabarito?

O que você poderia fazer é substituir esse cos^2 x por algo em função de seno.
Para isso use a fórmula cos^2 x + sen^2 x = 1

Depois só confirma pra mim o gabarito, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: senx

Mensagempor camilaarbar » Qui Mai 14, 2009 21:51

a resposta certa eh raiz 10 /10
camilaarbar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 13, 2009 21:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: senx

Mensagempor Cleyson007 » Sáb Mai 16, 2009 15:24

Boa tarde!

Aplicando a "Relação Fundamental da Trigonometria": {sen}^{2}x+{cos}^{2}x=1 encontramos:

Como senx=2cosx

(2cosx)²+cos²x=1 Resolvendo: cosx=\frac{\sqrt[2]{5}}{5}

Pelo mesmo princípio, tem-se que o senx=\frac{\sqrt[2]{5}}{5}

Como a questão pede sen2x, veja que é o mesmo que: 2cosx.senx. Como o cosseno e o seno de x é igual a \frac{\sqrt[2]{5}}{5} é só substituí-los.

2cosx.senx= 2\frac{\sqrt[2]{5}}{5}*\frac{\sqrt[2]{5}}{5}

Encontrando como resposta \frac{2}{5}

A resposta não está igual ao seu gabarito, mas não consegui encontrar erro no raciocínio acima.

Se alguém encontrar algum erro por favor comente :)

Espero ter ajudado.

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.