• Anúncio Global
    Respostas
    Exibições
    Última mensagem

senx

senx

Mensagempor camilaarbar » Qua Mai 13, 2009 21:57

Sabendo que sen x = 2 cos x e 0<x>pi /2, calcule
a) SEN 2X
eu tentei fazer através da fórmula sen 2x = 2sen x *cos x
sen 2x = 2 (2 cos x ) * cos x
sen 2x = 4 cos x * cos x
sen 2x = 4 cos ²x
e fui seguindo até chegar em baskara que naum dá o resultado certo
camilaarbar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 13, 2009 21:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: senx

Mensagempor Molina » Qua Mai 13, 2009 22:58

Boa noite, Camila.

Não entendi a última frase. Chegar em Báskara?
Acho que não é necessário.

Acho que até onde você chegou está certo.
Qual o resultado do gabarito?

O que você poderia fazer é substituir esse cos^2 x por algo em função de seno.
Para isso use a fórmula cos^2 x + sen^2 x = 1

Depois só confirma pra mim o gabarito, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: senx

Mensagempor camilaarbar » Qui Mai 14, 2009 21:51

a resposta certa eh raiz 10 /10
camilaarbar
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 13, 2009 21:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: senx

Mensagempor Cleyson007 » Sáb Mai 16, 2009 15:24

Boa tarde!

Aplicando a "Relação Fundamental da Trigonometria": {sen}^{2}x+{cos}^{2}x=1 encontramos:

Como senx=2cosx

(2cosx)²+cos²x=1 Resolvendo: cosx=\frac{\sqrt[2]{5}}{5}

Pelo mesmo princípio, tem-se que o senx=\frac{\sqrt[2]{5}}{5}

Como a questão pede sen2x, veja que é o mesmo que: 2cosx.senx. Como o cosseno e o seno de x é igual a \frac{\sqrt[2]{5}}{5} é só substituí-los.

2cosx.senx= 2\frac{\sqrt[2]{5}}{5}*\frac{\sqrt[2]{5}}{5}

Encontrando como resposta \frac{2}{5}

A resposta não está igual ao seu gabarito, mas não consegui encontrar erro no raciocínio acima.

Se alguém encontrar algum erro por favor comente :)

Espero ter ajudado.

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: