• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor thiago toledo » Qui Nov 10, 2011 15:59

Seja g uma função tal que g(1)=2, g'(1)=3 e g''(1)=8. Se f é uma função tal que f(x)={x}^{4}.g(x) , calcule f''(1).
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Nov 10, 2011 16:21

thiago toledo escreveu:Seja g uma função tal que g(1)=2, g'(1)=3 e g''(1)=8. Se f é uma função tal que f(x)={x}^{4}\cdot g(x) , calcule f''(1).


Você já enviou essa questão em outro tópico:

viewtopic.php?f=120&t=6419

Por favor, não duplique as suas mensagens.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada]

Mensagempor thiago toledo » Qui Nov 10, 2011 16:39

Eu sei disto, mas ninguém conseguiu me ajudar. Minha resolução ficou assim:

f'(x) = 4x³.g(x) + x^4 . g'(x)

f''(x) = 12x².g(x) + 4x³.g'(x) + 4x³.g'(x) + x^4 . g''(x)

esta correto, pois minha resposta não esta batendo com o gabarito que tem como resposta 40.

Minha resposta encontrada foi 56.

Alguém pode me dar uma luz?
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Nov 10, 2011 17:42

thiago toledo escreveu:Eu sei disto, mas ninguém conseguiu me ajudar.

Houve sim uma ajuda. Inclusive, foi indicado o procedimento que você usou na sua resolução.

thiago toledo escreveu:Minha resolução ficou assim:

f'(x) = 4x^3.g(x) + x^4 . g'(x)

f''(x) = 12x^2.g(x) + 4x^3.g'(x) + 4x^3.g'(x) + x^4 . g''(x)

esta correto, pois minha resposta não esta batendo com o gabarito que tem como resposta 40.

Minha resposta encontrada foi 56.


Note que no outro tópico foi solicitado que você enviasse a sua resolução, mas você não enviou.

A solução está correta. O gabarito está errado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}