por Buda » Seg Out 24, 2011 21:28
Ola. Preciso de ajuda quanto a esta sequencia.Se ela converge ou diverge.
an = cos(n/2) , e tambem aproveitando an = arctan(2n)
-
Buda
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Out 24, 2011 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por LuizAquino » Qua Out 26, 2011 00:35
Buda escreveu:an = cos(n/2)
Sabemos que toda sequência periódica convergente é constante.
Como essa sequência é periódica, se ela convergisse deveria ser constante. Mas, ela claramente não é constante. Portanto, ela é divergente.
Buda escreveu:an = arctan(2n)
Essa sequência é monótona (crescente) e limitada. Portanto ela é convergente.
Além disso, dos conhecimentos sobre a função arco-tangente, podemos dizer que o valor para o qual essa sequência converge é

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Buda » Sáb Out 29, 2011 19:50
humm.. tendi brigado.
Agora , para as outras sequencias.Tambem qnt se diverge ou converge.
1) ln(n)/(ln (2n))
2) ln(n +1) - ln (n)
3) sen(2n)/ ( 1 + n^0.5)
Desculpe tantas perguntas.Mais eu nao entendi muito bem como faço.Se uso limite tendendo a infito.Ou se uso propriedade de logaritmo.
Desde ja obrigado.
-
Buda
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Out 24, 2011 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por LuizAquino » Sáb Out 29, 2011 20:31
Buda escreveu:1) ln(n)/(ln (2n))
Converge.




Buda escreveu:2) ln(n +1) - ln (n)
Converge.



Buda escreveu:3) sen(2n)/ ( 1 + n^0.5)
Converge.
Sabemos que:

.
Multiplicando toda essa inequação pelo número positivo

, temos que:

Sabemos que:

Pelo
Teorema do Confronto (ou Teorema do Sanduíche), segue que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Buda » Sáb Out 29, 2011 21:55
Nossa caramba. muito obrigado .Sem puxa saco, mais voce manja muito.
Tava vendo aki alguns exerciccios e teoria tava em duvida entre sequencia e serie, mais agora entendi a diferença.Agora teve um exercicio q fiquei em duvida.Vo tenta se meio resumido.Me corrija se estiver errado por favor.
tem a serie.
? n=1 ate infito positivo de 1/(2n) - que é uma serie harmonica que diverge.
E eu estava confundindo a harmonica com a geometrica.
Poderia me responder qual é mais ou menos o corpo de uma serie harmonica.Para saber que ja ira divegir de uma vez.Pois apliquei a formula de geometrica naquela serie harmonica e da 2. ? ar^(n-1) = a/(1-r) IrI <1 .Logicamente deu errado pois nao é geometrica e sim harmonica. E aplicando a formula do Teste da divergencia dava 2 que é diferente de 0 portanto diverge.
Enfim. Quando eu sei q a sequencia é harmonica ou geometrica????
-
Buda
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Out 24, 2011 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por LuizAquino » Sáb Out 29, 2011 22:38
Buda escreveu:E eu estava confundindo a harmonica com a geometrica. (...)
Poderia me responder qual é mais ou menos o corpo de uma serie harmonica. (...)
Quando eu sei q a sequencia é harmonica ou geometrica?
Eu recomendo que você leia as páginas abaixo.
Série harmônicahttp://pt.wikipedia.org/wiki/S%C3%A9rie ... %A1tica%29Série geométricahttp://pt.wikipedia.org/wiki/S%C3%A9rie_geom%C3%A9trica
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Buda » Sáb Out 29, 2011 23:52
nao consegui ainda entende o meu problema.
a serie ? n=1 ate infinito positivo da funçao 1/(2n) .Que é uma serie harmonica(sempre diverge)
Mais fazendo o lim da funçao(teste da divergencia) da 1 sobre infinito = 0 ou seja converge????
Nao entendi???
-
Buda
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Out 24, 2011 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por Buda » Dom Out 30, 2011 00:27
Segue as seguintes series. Determine se converge ou diverge. Qual é o massete ?
? de n=1 ate infinito positivo da funçao 3^(n) + 2^(n)/(6)^n
? de n=1 ate infinito positivo da funçao ln((n^2 + 1)/(2n^2 +1))
? de n=1 ate infinito positivo da funçao e^n/n^2
obrigado
-
Buda
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Out 24, 2011 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por MarceloFantini » Dom Out 30, 2011 03:34
Séries harmônicas são da forma

, com

. Para

, ela diverge. Para

, ela converge.
A série geométrica é a série da forma

com

.
Para testar se um série converge, faça o limite da sequência da série com

. Se o limite for zero, ela
pode convergir, mas se o limite for diferente de zero então
com certeza ela diverge.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Dom Out 30, 2011 13:00
Eu recomendo que você leia a página:
Série (matemática)http://pt.wikipedia.org/wiki/S%C3%A9rie ... %A1tica%29Nesse texto há uma seção tratando sobre os testes de convergência ou divergência de séries.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Buda » Dom Out 30, 2011 19:05
Poderia me ajudar com essa estimativa de serie.obrigado
Encontre a soma parcial s10 da serie ? n=1 ate infinito positivo 1/((n)^4) . Estime o erro cometido ao usar s10 como uma aproximaçao para a soma da serie.
Encontre uma valor de n tal que sn represente a soma com precisao de 0,00001.
-
Buda
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Out 24, 2011 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por LuizAquino » Qua Nov 02, 2011 11:15
Buda escreveu:Encontre a soma parcial s10 da serie ? n=1 ate infinito positivo 1/((n)^4) . Estime o erro cometido ao usar s10 como uma aproximaçao para a soma da serie.
Encontre uma valor de n tal que sn represente a soma com precisao de 0,00001.
Esse exercício é uma aplicação direta da
"Estimativa do erro para o Teste da Integral". Você já estudou esse conteúdo?
Se você já estudou, então qual foi a sua dificuldade nesse exercício?
Por outro lado, se você ainda não estudou, então eu recomendo que estude esse conteúdo antes de tentar esse exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Série converge ou diverge
por Crist » Seg Fev 25, 2013 21:51
- 2 Respostas
- 2262 Exibições
- Última mensagem por Crist

Sáb Mar 02, 2013 10:16
Sequências
-
- Integral: converge ou diverge
por Victor Gabriel » Qui Abr 18, 2013 13:24
- 1 Respostas
- 946 Exibições
- Última mensagem por Victor Gabriel

Dom Abr 21, 2013 12:03
Cálculo: Limites, Derivadas e Integrais
-
- Integral: converge
por Victor Gabriel » Seg Abr 29, 2013 14:57
- 0 Respostas
- 826 Exibições
- Última mensagem por Victor Gabriel

Seg Abr 29, 2013 14:57
Cálculo: Limites, Derivadas e Integrais
-
- [sequencia] Calcular limite de sequencia por definição
por amigao » Ter Abr 15, 2014 15:15
- 4 Respostas
- 3732 Exibições
- Última mensagem por e8group

Dom Mai 11, 2014 17:09
Sequências
-
- Sequencia
por Amparo » Dom Mar 09, 2008 16:26
- 3 Respostas
- 3413 Exibições
- Última mensagem por nietzsche

Sex Set 02, 2011 00:42
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.