por Aliocha Karamazov » Qui Out 27, 2011 18:13
Gostaria que alguém me ajudasse nesse limite abaixo, sem usar L'Hospital.

Normalmente, eu posto minhas tentativas. Mas o problema aqui foi justamente como começar.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por angieluis » Qui Out 27, 2011 18:58
Começar por fazer a mudança de variavel de

.
Ficamos assim com:

Fazemos então o calculo do numerador, o limite é sempre quando y tende para zero:

multiplicando em cima e em baixo por

fica:

=

=

=

=0
Desculpa a forma como isto está escrito mas é a primeira vez que "ando" aqui!!!
-
angieluis
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Out 27, 2011 18:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matematica
- Andamento: formado
por Aliocha Karamazov » Qui Out 27, 2011 19:43
Obrigado pela ajuda. Quanto à escrita em

, dê uma lida no tópico destinado a ele. Eu aprendi tudo por lá!
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Qui Out 27, 2011 20:19
Vejamos outra maneira.
Faça a substituição

.

Use a identidade trigonométrica

.

Multiplique o numerador e o denominador por

.





Note que no segundo fator aparece um limite cujo o resultado é zero. Portanto no final esse produto é zero.
Mas se ainda assim você quiser continuar a resolução, então é necessário arrumar o primeiro fator para aparecer o limite trigonométrico fundamental. Note que:

Fazendo a substituição

, temos que:

Voltando para aquele produto, temos que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Aliocha Karamazov » Sex Out 28, 2011 03:27
Obrigado, Luiz.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4787 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4434 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1617 Exibições
- Última mensagem por DanielFerreira

Sex Abr 17, 2015 20:32
Funções
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1631 Exibições
- Última mensagem por adauto martins

Seg Abr 20, 2015 20:57
Funções
-
- Limite de funções
por jeremiashenrique » Ter Abr 21, 2015 12:16
- 2 Respostas
- 1709 Exibições
- Última mensagem por jeremiashenrique

Qui Abr 23, 2015 00:18
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.