• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] limite por L'Hospital

[calculo] limite por L'Hospital

Mensagempor beel » Seg Out 24, 2011 17:18

limite de \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}

seria 
\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =
\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} (L'Hospital novamente) =
\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0

?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite por L'Hospital

Mensagempor LuizAquino » Seg Out 24, 2011 17:59

BEL NS escreveu:limite de \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}

seria

\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =
\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} =
(L'Hospital novamente)
\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0[/tex]

?


Note que:

\lim_{x\to \infty}\frac{(\sqrt{x})^\prime}{(\ln x)^\prime} = \lim_{x\to \infty}\frac{\frac{1}{2\sqrt{x}}}{\frac{1}{x}} = \lim_{x\to \infty}\frac{x}{2\sqrt{x}}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] limite por L'Hospital

Mensagempor beel » Ter Out 25, 2011 17:12

seria...

\lim_{x\rightarrow\infty}\frac{(x)\prime}{(2\sqrt[]{x})\prime} =
\lim_{x\rightarrow\infty}\frac{1}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow\infty}\sqrt[]{x}

a resposta seria \infty?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite por L'Hospital

Mensagempor LuizAquino » Ter Out 25, 2011 17:21

beel escreveu:seria...

\lim_{x\rightarrow\infty}\frac{(x)\prime}{(2\sqrt[]{x})\prime} =
\lim_{x\rightarrow\infty}\frac{1}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow\infty}\sqrt[]{x}

a resposta seria \infty?


Sim, mas não é necessário aplicar a regra de L'Hospital novamente.

Note que:

\lim_{x\to \infty}\frac{x}{2\sqrt{x}} = \lim_{x\to \infty}\frac{x\cdot \sqrt{x}}{(2\sqrt{x})\cdot \sqrt{x}}

= \lim_{x\to \infty} \frac{x\sqrt{x}}{2x}

= \lim_{x\to \infty} \frac{\sqrt{x}}{2} = \infty
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.