• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] limite por L'Hospital

[calculo] limite por L'Hospital

Mensagempor beel » Seg Out 24, 2011 17:18

limite de \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}

seria 
\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =
\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} (L'Hospital novamente) =
\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0

?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite por L'Hospital

Mensagempor LuizAquino » Seg Out 24, 2011 17:59

BEL NS escreveu:limite de \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}

seria

\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =
\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} =
(L'Hospital novamente)
\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0[/tex]

?


Note que:

\lim_{x\to \infty}\frac{(\sqrt{x})^\prime}{(\ln x)^\prime} = \lim_{x\to \infty}\frac{\frac{1}{2\sqrt{x}}}{\frac{1}{x}} = \lim_{x\to \infty}\frac{x}{2\sqrt{x}}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] limite por L'Hospital

Mensagempor beel » Ter Out 25, 2011 17:12

seria...

\lim_{x\rightarrow\infty}\frac{(x)\prime}{(2\sqrt[]{x})\prime} =
\lim_{x\rightarrow\infty}\frac{1}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow\infty}\sqrt[]{x}

a resposta seria \infty?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] limite por L'Hospital

Mensagempor LuizAquino » Ter Out 25, 2011 17:21

beel escreveu:seria...

\lim_{x\rightarrow\infty}\frac{(x)\prime}{(2\sqrt[]{x})\prime} =
\lim_{x\rightarrow\infty}\frac{1}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow\infty}\sqrt[]{x}

a resposta seria \infty?


Sim, mas não é necessário aplicar a regra de L'Hospital novamente.

Note que:

\lim_{x\to \infty}\frac{x}{2\sqrt{x}} = \lim_{x\to \infty}\frac{x\cdot \sqrt{x}}{(2\sqrt{x})\cdot \sqrt{x}}

= \lim_{x\to \infty} \frac{x\sqrt{x}}{2x}

= \lim_{x\to \infty} \frac{\sqrt{x}}{2} = \infty
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59