por beel » Seg Out 24, 2011 17:18
limite de
![\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}
seria
\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =
\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} (L'Hospital novamente) =
\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0 \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}
seria
\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =
\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} (L'Hospital novamente) =
\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0](/latexrender/pictures/437a9b7e609ee02e30384df71ca65099.png)
?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Out 24, 2011 17:59
BEL NS escreveu:limite de
![\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx} \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}}{lnx}](/latexrender/pictures/db84407b52df7fc7329d8c79993df1be.png)
seria
![\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} = \lim_{x\rightarrow\infty}\frac{\sqrt[]{x}\prime}{(lnx)\prime} =](/latexrender/pictures/8fe2dd2b841070936fb8bda85fafeaf0.png)
![\lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} = \lim_{x\rightarrow\infty}\frac{2\sqrt[]{x}}{x} =](/latexrender/pictures/c1e94ff9199458bb957fdbfceb5baec2.png)
(L'Hospital novamente)
![\lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0 \lim_{x\rightarrow\infty}\frac{1}{\sqrt[]{x}} = 0](/latexrender/pictures/25eed37d2a944eacba24d2ab0352aebe.png)
[/tex]
?
Note que:

Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por beel » Ter Out 25, 2011 17:12
seria...
![\lim_{x\rightarrow\infty}\frac{(x)\prime}{(2\sqrt[]{x})\prime} =
\lim_{x\rightarrow\infty}\frac{1}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow\infty}\sqrt[]{x} \lim_{x\rightarrow\infty}\frac{(x)\prime}{(2\sqrt[]{x})\prime} =
\lim_{x\rightarrow\infty}\frac{1}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow\infty}\sqrt[]{x}](/latexrender/pictures/1fcaf18e3cd44718aa39a3506d535cfd.png)
a resposta seria

?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CALCULO] limite - L'Hospital?
por beel » Dom Out 30, 2011 17:13
- 3 Respostas
- 1772 Exibições
- Última mensagem por LuizAquino

Dom Out 30, 2011 18:28
Cálculo: Limites, Derivadas e Integrais
-
- Limite( Cálculo de limites sem a utilização L'hôspital )
por brunotorres123-abc » Dom Abr 05, 2015 14:55
- 0 Respostas
- 1063 Exibições
- Última mensagem por brunotorres123-abc

Dom Abr 05, 2015 14:55
Cálculo: Limites, Derivadas e Integrais
-
- LIMITE COM L HOSPITAL
por geovane » Seg Out 03, 2016 18:17
- 1 Respostas
- 5101 Exibições
- Última mensagem por DanielFerreira

Sáb Nov 26, 2016 19:03
Cálculo: Limites, Derivadas e Integrais
-
- Resolver limite de exponencial por L'Hospital.
por Sobreira » Sáb Nov 30, 2013 15:00
- 9 Respostas
- 6244 Exibições
- Última mensagem por e8group

Sáb Nov 30, 2013 17:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.