por heric » Qui Out 13, 2011 14:36
provar que o limite de [f(x).g(x)] existe mesmo que f(x) e g(x) não existam.
-
heric
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Out 13, 2011 14:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura química
- Andamento: cursando
por heric » Sáb Out 15, 2011 01:32
para quem resolveu, desculpe cometi um erro, na verdade era pra provar que lim [f(x)-g(x)] existe mesmo que f(x) e g(x) não existam. eu troquei o sinal de subtração(-) por multiplicação(.) se puder responder novamente...muito obrigado!
-
heric
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Out 13, 2011 14:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura química
- Andamento: cursando
por LuizAquino » Sáb Out 15, 2011 07:48
Qual é exatamente o texto do exercício? Você poderia por favor copiar aqui exatamente da mesma maneira como ele aparece?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por heric » Sáb Out 15, 2011 13:42
"Mostre, por meio de exemplos, que o limite[f(x) - g(x)] existe mesmo que f(x) e g(x) não existam."
-
heric
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Out 13, 2011 14:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura química
- Andamento: cursando
por LuizAquino » Seg Out 17, 2011 11:35
heric escreveu:"Mostre, por meio de exemplos, que o limite[f(x) - g(x)] existe mesmo que f(x) e g(x) não existam."
O enunciado desse exercício não está bem posto.
Um texto mais adequado seria, por exemplo, algo como:
"
Verifique, por meio de exemplos, que em alguns casos
existe mesmo que f(c) e g(c) não estejam definidos."
Basta então fornecer um exemplo. Considere as funções:


Ambas as funções não estão definidas em x = 1. Entretanto, temos que:



ObservaçãoNote que no enunciado proposto está escrito que "(...)
em alguns casos (...)" isso pode ser verdadeiro. Vejamos um exemplo onde isso é falso.
Considere as funções:


Ambas as funções não estão definidas em x = 0. Além disso, temos que

não existe, pois os limites laterais são distintos:


-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITES 2 variáveis] Provar que não existe o limite
por Sohrab » Qui Abr 25, 2013 00:01
- 0 Respostas
- 4633 Exibições
- Última mensagem por Sohrab

Qui Abr 25, 2013 00:01
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Qual a diferença entre limite que não existe e...
por morena » Sex Mar 22, 2013 08:22
- 3 Respostas
- 2929 Exibições
- Última mensagem por Russman

Sex Mar 22, 2013 21:49
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Provar que limite alcança valor determinado
por cassiano07 » Qui Nov 10, 2011 23:58
- 17 Respostas
- 7956 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 18:09
Cálculo: Limites, Derivadas e Integrais
-
- O limite existe?
por Cleyson007 » Sáb Abr 28, 2012 17:00
- 1 Respostas
- 1451 Exibições
- Última mensagem por LuizAquino

Ter Mai 01, 2012 16:36
Cálculo: Limites, Derivadas e Integrais
-
- Existe ou não o limite?
por Cleyson007 » Sáb Abr 28, 2012 17:28
- 2 Respostas
- 1859 Exibições
- Última mensagem por MarceloFantini

Dom Abr 29, 2012 14:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.