VI uma resposta em outro site, porem nao entendi, gostaria de ajuda!!
http://www.uploadimagens.com/upload/bc3 ... 3d8aef.jpg
A figura acima ilustra um TANGRAN, quebra-cabeças com-
posto por 7 peças que podem ser posicionadas de maneira
a formar um quadrado. Suas peças são:
- 2 triângulos grandes idênticos;
- 1 triângulo médio;
- 2 triângulos pequenos idênticos;
- 1 quadrado e
- 1 paralelogramo.
Essas peças foram numeradas de 1 a 7 como ilustrado na
figura abaixo.
http://www.uploadimagens.com/upload/1cb ... 886b5a.jpg
Sorteiam-se simultaneamente, de maneira aleatória, duas
dessas peças pelo número. Sabendo-se que todas as pe-
ças têm a mesma probabilidade de serem sorteadas, a pro-
babilidade de que a soma das áreas das peças escolhidas
seja MAIOR do que a quarta parte da área do Tangran com-
pleto é:
(A) 12/21
(B) 11/21
(C) 10/21
(D) 9/21
(E) 8/21
RESPOSTA b


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)