por vania a » Sáb Out 15, 2011 09:16
VI uma resposta em outro site, porem nao entendi, gostaria de ajuda!!
http://www.uploadimagens.com/upload/bc3 ... 3d8aef.jpgA figura acima ilustra um TANGRAN, quebra-cabeças com-
posto por 7 peças que podem ser posicionadas de maneira
a formar um quadrado. Suas peças são:
- 2 triângulos grandes idênticos;
- 1 triângulo médio;
- 2 triângulos pequenos idênticos;
- 1 quadrado e
- 1 paralelogramo.
Essas peças foram numeradas de 1 a 7 como ilustrado na
figura abaixo.
http://www.uploadimagens.com/upload/1cb ... 886b5a.jpgSorteiam-se simultaneamente, de maneira aleatória, duas
dessas peças pelo número. Sabendo-se que todas as pe-
ças têm a mesma probabilidade de serem sorteadas, a pro-
babilidade de que a soma das áreas das peças escolhidas
seja MAIOR do que a quarta parte da área do Tangran com-
pleto é:
(A) 12/21
(B) 11/21
(C) 10/21
(D) 9/21
(E) 8/21
RESPOSTA b
-
vania a
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Set 07, 2011 16:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administracao
- Andamento: formado
por Molina » Sáb Out 15, 2011 14:51
Boa tarde.
Suas imagens foram expiradas já.
Coloque a imagem diretamente daqui, através da aba "adicionar um anexo", logo abaixo da caixa de escrever suas postagens.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por vania a » Dom Out 16, 2011 07:50
Nao foi possivel copiar a figura, anexei a prova, é a questão nr 20.
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
vania a
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qua Set 07, 2011 16:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administracao
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10066 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 18580 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5048 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4304 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4348 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.