• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBABILIDADE TANGRAN

PROBABILIDADE TANGRAN

Mensagempor vania a » Sáb Out 15, 2011 09:16

VI uma resposta em outro site, porem nao entendi, gostaria de ajuda!!
http://www.uploadimagens.com/upload/bc3 ... 3d8aef.jpg
A figura acima ilustra um TANGRAN, quebra-cabeças com-
posto por 7 peças que podem ser posicionadas de maneira
a formar um quadrado. Suas peças são:

- 2 triângulos grandes idênticos;
- 1 triângulo médio;
- 2 triângulos pequenos idênticos;
- 1 quadrado e
- 1 paralelogramo.

Essas peças foram numeradas de 1 a 7 como ilustrado na
figura abaixo.

http://www.uploadimagens.com/upload/1cb ... 886b5a.jpg

Sorteiam-se simultaneamente, de maneira aleatória, duas
dessas peças pelo número. Sabendo-se que todas as pe-
ças têm a mesma probabilidade de serem sorteadas, a pro-
babilidade de que a soma das áreas das peças escolhidas
seja MAIOR do que a quarta parte da área do Tangran com-
pleto é:

(A) 12/21
(B) 11/21
(C) 10/21
(D) 9/21
(E) 8/21

RESPOSTA b
vania a
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Set 07, 2011 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: formado

Re: PROBABILIDADE TANGRAN

Mensagempor Molina » Sáb Out 15, 2011 14:51

Boa tarde.

Suas imagens foram expiradas já.

Coloque a imagem diretamente daqui, através da aba "adicionar um anexo", logo abaixo da caixa de escrever suas postagens.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: PROBABILIDADE TANGRAN

Mensagempor vania a » Dom Out 16, 2011 07:50

Nao foi possivel copiar a figura, anexei a prova, é a questão nr 20.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

vania a
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Set 07, 2011 16:13
Formação Escolar: GRADUAÇÃO
Área/Curso: administracao
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59