por jr_freitas » Sex Out 07, 2011 16:55
Boa tarde!
Tenho dúvida no seguinte exercício: pede pra indicar nos problemas abaixo

f(x) e

f(x) para cada função dada. Se o valor for infinito indique se é

.

Usando a regra da potência maior, fiz assim:

aí fazendo as contas deu f(x) = 1 -0 -0 que f(x)=1, não sei se essa parte está certo ou se precisava fazer isso... como eu sei que o resultado vai pra +

ou -

ou os dois?
Obrigado!
Abraço
-
jr_freitas
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Out 06, 2011 10:28
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Tecnólogo em Análise de Sistemas
- Andamento: cursando
por Claudin » Sáb Out 08, 2011 12:59
http://www.wolframalpha.com/input/?i=lim_{x-%3E%2B%5Cinfty}+x^3-4x^2-4
Não consegui compreender este exercício, eu utilizava a mesma técnica, mas parece que esta dando errado.
Quando posso utilizar a técnica de dividir por maior expoente e quando não posso?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Renato_RJ » Sáb Out 08, 2011 13:10
Amigos, tudo em paz ??
Essa "técnica", na verdade, consiste em colocar o termo de maior grau em evidência e não dividir o polinômio por ele, usamos essa técnica quando temos uma fração onde tanto o denominador quanto o numerador são polinômios, então colocamos o termo de maior grau em evidência para cancelarmos ele.
Quando temos um limite da forma está apresentado, uma função polinomial, aplicamos o valor direto no polinômio e estudamos o seu comportamento, veja:

Pois o termo

"cresce" mais rápido do que os outros, logo o polinômio todo tende para o infinito positivo, mas quando x tende ao

, o polinômio tende ao

pois

mantém o sinal negativo...
Espero ter ajudado,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Molina » Sáb Out 08, 2011 13:13
Boa tarde.
Pelo o que entendi vocês estão confundindo alguns conceitos. Esta técnica de dividir pelo maior expoente aplica-se quando eu tenho um quociente de duas funções, por exemplo:

Neste caso sim divide pelo monômio dominante o numerador e o denominador.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Claudin » Sáb Out 08, 2011 18:37
Correto, quando for operação quociente, posso utilizar a técnica de colocar em evidência?
E quando não for, procuro sempre multiplicar e dividir pelo conjugado?
Correto?
Então como resolver o exercício proposto no 1º post acima.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sáb Out 08, 2011 19:14
Renato_RJ escreveu:(...)
Essa "técnica", na verdade, consiste em colocar o termo de maior grau em evidência e não dividir o polinômio por ele
(...)
Tanto faz enxergar a técnica como "colocar em evidência" ou como "dividir os polinômios."
Vamos tomar o exemplo:
1) Método da "divisão"

2) Método da "evidência"


Obviamente, por qualquer um dos dois "métodos" a resposta é a mesma.
Claudin escreveu:Correto, quando for operação quociente, posso utilizar a técnica de colocar em evidência?
É por aí.
Claudin escreveu:E quando não for, procuro sempre multiplicar e dividir pelo conjugado?
Nem sempre.
Claudin escreveu:Então como resolver o exercício proposto no 1º post acima.
Desejamos resolver o limite:

Do jeito que está, temos uma indeterminação do tipo

.
Aplicando os conhecimentos sobre os polinômios, sabemos que se

,

e

são as raízes do polinômio que aparece nesse limite, então podemos escrever que:

Não importa o valor das raízes, temos que o resultado desse último limite será:

Portanto, temos que:

Se agora desejamos calcular esse limite quando

, então temos que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Sáb Out 08, 2011 19:22
LuizAquino escreveu:Desejamos resolver o limite:

Do jeito que está, temos uma indeterminação do tipo

.
Aplicando os conhecimentos sobre os polinômios, sabemos que se

,

e

são as raízes do polinômio que aparece nesse limite, então podemos escrever que:

Não importa o valor das raízes, temos que o resultado desse último limite será:

Portanto, temos que:

Se agora desejamos calcular esse limite quando

, então temos que:

Correto, as explicações anteriores eu compreendi.
Mas esse método não compreendi como assim (x-x1)...?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sáb Out 08, 2011 19:35
Claudin escreveu:Mas esse método não compreendi como assim (x-x1)...?
Para compreender as explicações dadas anteriormente é necessário que você saiba fatorar um polinômio.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Sáb Out 08, 2011 19:38
Claro que eu sei fatorar.
Se pudesse me explicar somente o x-x1...
ficarei grato
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Sáb Out 08, 2011 19:59
Claudin escreveu:Claro que eu sei fatorar.
Se pudesse me explicar somente o x-x1...
ficarei grato
Se c é uma constante, então é válido que

.
Desse modo, considerando que

,

e

são constantes, será válido que

,

e

.
E agora, como você sabe fatorar, não deve enxergar problema algum em escrever o polinômio

como sendo igual a

, sendo

,

e

as raízes desse polinômio.
Portanto, no final temos que:



-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Sáb Out 08, 2011 20:03
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3279 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4464 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Dúvida em questão de Limites no infinito
por Jacques » Ter Jul 12, 2016 21:42
- 4 Respostas
- 7222 Exibições
- Última mensagem por vitor_jo

Qua Jul 13, 2016 16:51
Cálculo: Limites, Derivadas e Integrais
-
- Limites no infinito
por felipe_ad » Sáb Abr 24, 2010 15:00
- 3 Respostas
- 5327 Exibições
- Última mensagem por MarceloFantini

Dom Abr 25, 2010 02:27
Cálculo: Limites, Derivadas e Integrais
-
- Limites no infinito
por Rosi7 » Sáb Mai 02, 2015 19:13
- 3 Respostas
- 2705 Exibições
- Última mensagem por DanielFerreira

Dom Mai 03, 2015 15:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.