por Garota nerd » Seg Set 19, 2011 00:39
Olá, alguém poderia me ajudar com essas questões?^^
1-Seja u =(2,3), e as bases B1={(1,2),(-1,3)},B2={(2,1),(-2,1)}
a) Escreva o vetor u nas bases B1 e B2.
b) Escreva o vetor coordenada de u nas duas bases.
Qual a diferença dessas duas questões?
sei que para escrever o vetor coordenada de u nas bases é só usar combinação linear.
tipo:
u=a(1,2)+b(-1,3)
(2,3)=a(1,2)+b(-1,3)
e u=a(2,1)+b(-2,1)
(2,3)=a(2,1)+b(-2,1)
Qual diferença do que pede em a para b?
a outra questão é:
2- Mostre que B={(1,0),(i,0),(0,1),(0,1),(0,i)} é base do espaço vetorial dos pares ordenados dos números complexos sobre o corpo dos complexos A={(u,v)/u,v E C}.
sei que a idéia é saber se B é li e se B gera V.
Mas como fica fazendo isso com números complexos.
Só faltam essas questões para terminar a lista que a professora pediu.
Alguém poderia me ajudar por favor?:)
-
Garota nerd
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mai 03, 2011 17:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 10:14
Garota nerd escreveu:Qual a diferença dessas duas questões?
Considere a base

. Escrever o vetor

nessa base significa determinar as constantes

e

tais que

. O par

é chamado de vetor coordenada de

na base
B.
Garota nerd escreveu:Mas como fica fazendo isso com números complexos.
Lembre-se que os números complexos possuem o formato u = a + bi, com a e b números reais.
Dessa maneira, uma outra forma de enxergar

é escrevendo

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Garota nerd » Seg Set 19, 2011 14:44
entendi a primeira fiz e acertei,mas falta entender a,segunda fiz assim:
verificar se é li.
a(1,0)+b(i,0)+c(0,1)+d(0,i)=0
(a,0)+(bi,0)+(0,c)+(0,di)=0
a+bi=0
c+di=0
do jeito que ta aí o grau de liberdade é 2, ou seja 2 variáveis livres,assim é ld,então não seria base.
a=-bi
c=-di
meus livros só falam em relação aos reais.
Se eu errei me ajude por favor,só falta essa questão,a prova é quinta.

uma obs:
eu coloquei a base errada, com um vetor a mais.
a certa é essa:
B={(1,0),(i,0),(0,1),(0,i)}
^^
-
Garota nerd
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mai 03, 2011 17:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 16:22
Garota nerd escreveu:a+bi=0
c+di=0
Quando dois números complexos são iguais?
Ora, os números complexos u = p + qi e v = k + mi são iguais se, e somente se, p = k e q = m.
Pensando dessa forma, quando que o número complexo a + bi será igual ao número complexo 0? (Lembre-se que o número complexo 0 pode ser visto como 0 + 0i.)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Algebra Linear: Espaço Vetorial
por Caeros » Dom Nov 14, 2010 17:39
- 4 Respostas
- 5404 Exibições
- Última mensagem por andrefahl

Sáb Nov 27, 2010 18:16
Álgebra
-
- Algebra Linear - Espaço Vetorial
por Nillcolas » Qua Mar 16, 2011 17:05
- 1 Respostas
- 3797 Exibições
- Última mensagem por LuizAquino

Qua Mar 16, 2011 17:31
Álgebra
-
- [Álgebra Linear] Provar que é um espaço vetorial
por Nicolas1Lane » Sáb Set 06, 2014 19:40
- 0 Respostas
- 1223 Exibições
- Última mensagem por Nicolas1Lane

Sáb Set 06, 2014 19:40
Álgebra Linear
-
- algebra linear - base e dimensão do espaço de funçoes
por mou_duarte » Seg Mai 02, 2016 11:14
- 0 Respostas
- 1884 Exibições
- Última mensagem por mou_duarte

Seg Mai 02, 2016 11:14
Álgebra Linear
-
- ESPAÇO LINEAR
por p1a2u3lo » Dom Set 18, 2016 11:01
- 0 Respostas
- 1261 Exibições
- Última mensagem por p1a2u3lo

Dom Set 18, 2016 11:01
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.