por Garota nerd » Seg Set 19, 2011 00:39
Olá, alguém poderia me ajudar com essas questões?^^
1-Seja u =(2,3), e as bases B1={(1,2),(-1,3)},B2={(2,1),(-2,1)}
a) Escreva o vetor u nas bases B1 e B2.
b) Escreva o vetor coordenada de u nas duas bases.
Qual a diferença dessas duas questões?
sei que para escrever o vetor coordenada de u nas bases é só usar combinação linear.
tipo:
u=a(1,2)+b(-1,3)
(2,3)=a(1,2)+b(-1,3)
e u=a(2,1)+b(-2,1)
(2,3)=a(2,1)+b(-2,1)
Qual diferença do que pede em a para b?
a outra questão é:
2- Mostre que B={(1,0),(i,0),(0,1),(0,1),(0,i)} é base do espaço vetorial dos pares ordenados dos números complexos sobre o corpo dos complexos A={(u,v)/u,v E C}.
sei que a idéia é saber se B é li e se B gera V.
Mas como fica fazendo isso com números complexos.
Só faltam essas questões para terminar a lista que a professora pediu.
Alguém poderia me ajudar por favor?:)
-
Garota nerd
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mai 03, 2011 17:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 10:14
Garota nerd escreveu:Qual a diferença dessas duas questões?
Considere a base

. Escrever o vetor

nessa base significa determinar as constantes

e

tais que

. O par

é chamado de vetor coordenada de

na base
B.
Garota nerd escreveu:Mas como fica fazendo isso com números complexos.
Lembre-se que os números complexos possuem o formato u = a + bi, com a e b números reais.
Dessa maneira, uma outra forma de enxergar

é escrevendo

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Garota nerd » Seg Set 19, 2011 14:44
entendi a primeira fiz e acertei,mas falta entender a,segunda fiz assim:
verificar se é li.
a(1,0)+b(i,0)+c(0,1)+d(0,i)=0
(a,0)+(bi,0)+(0,c)+(0,di)=0
a+bi=0
c+di=0
do jeito que ta aí o grau de liberdade é 2, ou seja 2 variáveis livres,assim é ld,então não seria base.
a=-bi
c=-di
meus livros só falam em relação aos reais.
Se eu errei me ajude por favor,só falta essa questão,a prova é quinta.

uma obs:
eu coloquei a base errada, com um vetor a mais.
a certa é essa:
B={(1,0),(i,0),(0,1),(0,i)}
^^
-
Garota nerd
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Mai 03, 2011 17:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 16:22
Garota nerd escreveu:a+bi=0
c+di=0
Quando dois números complexos são iguais?
Ora, os números complexos u = p + qi e v = k + mi são iguais se, e somente se, p = k e q = m.
Pensando dessa forma, quando que o número complexo a + bi será igual ao número complexo 0? (Lembre-se que o número complexo 0 pode ser visto como 0 + 0i.)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Algebra Linear: Espaço Vetorial
por Caeros » Dom Nov 14, 2010 17:39
- 4 Respostas
- 5404 Exibições
- Última mensagem por andrefahl

Sáb Nov 27, 2010 18:16
Álgebra
-
- Algebra Linear - Espaço Vetorial
por Nillcolas » Qua Mar 16, 2011 17:05
- 1 Respostas
- 3797 Exibições
- Última mensagem por LuizAquino

Qua Mar 16, 2011 17:31
Álgebra
-
- [Álgebra Linear] Provar que é um espaço vetorial
por Nicolas1Lane » Sáb Set 06, 2014 19:40
- 0 Respostas
- 1223 Exibições
- Última mensagem por Nicolas1Lane

Sáb Set 06, 2014 19:40
Álgebra Linear
-
- algebra linear - base e dimensão do espaço de funçoes
por mou_duarte » Seg Mai 02, 2016 11:14
- 0 Respostas
- 1884 Exibições
- Última mensagem por mou_duarte

Seg Mai 02, 2016 11:14
Álgebra Linear
-
- ESPAÇO LINEAR
por p1a2u3lo » Dom Set 18, 2016 11:01
- 0 Respostas
- 1261 Exibições
- Última mensagem por p1a2u3lo

Dom Set 18, 2016 11:01
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.