por beel » Seg Set 19, 2011 00:03
Como eu resolvo um problema com a derivação?como meu resultado pode dar um numero real com a derivação?Eu sempre tenho que fazer o limite da razão incremental ou eu derivo ( pela "regra do tombo") ate dar um numero real?
Por exemplo nesse problema:
O numero de pessoas infectadas por uma epidemia se da pela função
![I(t)=\frac{t^3}{3}+ 3t^2 + 8\sqrt[]{t} I(t)=\frac{t^3}{3}+ 3t^2 + 8\sqrt[]{t}](/latexrender/pictures/f9ea950fab64b036ddd8e8eeed1ffec3.png)
, com que taxa o numero de infectados esta aumentando no quarto dia?
Essa taxa de variação é a derivada certo? mas como acho isso?
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 09:58
isanobile,
Para ter uma ideia de como proceder, eu recomendo que você assista as vídeo-aulas "09. Cálculo I - Taxa de Variação" e "10. Cálculo I - Função Derivada". Elas estão disponíveis em meu canal no YouTube:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por beel » Dom Out 16, 2011 17:08
Ok assistirei,obrigada.
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- limite com derivada
por giboia90 » Qui Jan 05, 2012 01:50
- 2 Respostas
- 1661 Exibições
- Última mensagem por giboia90

Qui Jan 05, 2012 10:59
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela definição de limite
por SheylaTamarossi » Dom Jun 12, 2011 11:27
- 6 Respostas
- 8133 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 13, 2011 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela definição de limite
por Andreyan » Ter Jul 12, 2011 17:55
- 4 Respostas
- 2658 Exibições
- Última mensagem por LuizAquino

Qua Jul 13, 2011 15:27
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] derivada de funções trigonometricas
por beel » Qua Set 21, 2011 13:09
- 3 Respostas
- 2552 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:07
Cálculo: Limites, Derivadas e Integrais
-
- [Limite, Continuidade, Derivada] Bibliografias básicas
por danielbrisolara » Ter Out 02, 2012 07:12
- 5 Respostas
- 3994 Exibições
- Última mensagem por danielbrisolara

Qua Out 03, 2012 07:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.