• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limite de Raiz "m" de "infinito"

[LIMITES] Limite de Raiz "m" de "infinito"

Mensagempor antonelli2006 » Sáb Set 17, 2011 05:56

\lim_{x\rightarrow\infty} \sqrt[m]{x}

Olá galera, sou novo por aqui...
Estou cursando Eng. de Controle e Automação no CEFET/RJ e estou com uma dúvida na questão acima.
Na minha tentativa, consegui isso:

\lim_{x\rightarrow\infty} \sqrt[m]{x} = \infty

\sqrt[m]{\infty} = {\infty}^{\frac{1}{m}} = \infty

Mas temos que \sqrt{4} = \pm2, então, pode-se dizer que \sqrt[m]{\infty} = \pm\infty (quando "m" for par) e \sqrt[m]{\infty} = +\infty (quando "m" for ímpar), certo?

Então o limite também seguiria a regra acima?
Agradeço à todo, grande abraço.
antonelli2006
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Set 17, 2011 05:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [LIMITES] Limite de Raiz "m" de "infinito"

Mensagempor LuizAquino » Sáb Set 17, 2011 10:27

antonelli2006 escreveu:Olá galera, sou novo por aqui...


Seja bem-vindo ao fórum!

antonelli2006 escreveu:Na minha tentativa, consegui isso:
\lim_{x\rightarrow\infty} \sqrt[m]{x} = \infty

Está correto.

Sendo que se m é par, então temos que:
\lim_{x\rightarrow +\infty} \sqrt[m]{x} = +\infty

Já se m é ímpar, então temos que:
\lim_{x\rightarrow +\infty} \sqrt[m]{x} = +\infty

\lim_{x\rightarrow -\infty} \sqrt[m]{x} = -\infty

antonelli2006 escreveu:Mas temos que \sqrt{4} = \pm2, então, pode-se dizer que \sqrt[m]{\infty} = \pm\infty (quando "m" for par) e \sqrt[m]{\infty} = +\infty (quando "m" for ímpar), certo?

Errado! Você está confundindo o conceito de radiciação. Eu recomendo que você leia o tópico abaixo:
Dúvida sobre Propriedades de Radiciação
viewtopic.php?f=106&t=4143

Observação
Eu acredito que há dois canais no YouTube que podem lhe interessar:
http://www.youtube.com/nerckie
http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITES] Limite de Raiz "m" de "infinito"

Mensagempor antonelli2006 » Sáb Set 17, 2011 17:52

Entendi!
A diferença está na equação e não na operação.

y = \sqrt[]{4}
y = 2

{y}^{2} = 4
y = \sqrt[]{4}
y = \pm2

Então...

y = \sqrt[]{\infty}
y = \infty

{y}^{2} = \infty
y = \sqrt[]{}\infty
y = \pm\infty

Tendo estas propriedades, é correto afirmar que \lim_{x\rightarrow\infty} \sqrt[m]{x} = \infty independente do "m" ser par ou ímpar. Certo?
antonelli2006
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Set 17, 2011 05:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [LIMITES] Limite de Raiz "m" de "infinito"

Mensagempor LuizAquino » Sáb Set 17, 2011 18:33

antonelli2006 escreveu:Entendi!
A diferença está na equação e não na operação.

Ok.

antonelli2006 escreveu:y = \sqrt[]{4}
y = 2

Ok.

antonelli2006 escreveu:{y}^{2} = 4
y = \sqrt[]{4}
y = \pm 2

Ok.

antonelli2006 escreveu:y = \sqrt[]{\infty}
y = \infty

{y}^{2} = \infty
y = \sqrt{\infty}
y = \pm\infty

Cuidado! O infinito, que como você já sabe é representado pelo símbolo \infty, é um conceito, mas não um número fixo. Não faz sentido escrever algo como y = \sqrt{\infty} ou ainda y^2 = \infty . Quando você escreve algo desse tipo é como se você estivesse trabalhando com o conceito de infinito como se ele fosse um número qualquer fixo. O que podemos escrever (e faz sentido) seria algo como y = \lim_{x\to +\infty} \sqrt{x} .

antonelli2006 escreveu:Tendo estas propriedades, é correto afirmar que \lim_{x\rightarrow\infty} \sqrt[m]{x} = \infty independente do "m" ser par ou ímpar. Certo?

Mais uma vez cuidado. É necessário analisar o sinal. Vide os limites que apresentei na mensagem anterior conforme m seja par ou ímpar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITES] Limite de Raiz "m" de "infinito"

Mensagempor antonelli2006 » Sáb Set 17, 2011 21:37

Mas dizemos que independente de "m" ser par ou ímpar, o seguinte limite sempre acontecerá:

\lim_{x\rightarrow\infty} \sqrt[m]{x}

Pois x\rightarrow\infty, sendo \infty POSITIVO! Certo?

Me baseei na definição "que a raiz m-ésima de qualquer número positivo é sempre positivo"! *-)
antonelli2006
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Set 17, 2011 05:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [LIMITES] Limite de Raiz "m" de "infinito"

Mensagempor LuizAquino » Dom Set 18, 2011 10:08

antonelli2006 escreveu:Mas dizemos que independente de "m" ser par ou ímpar, o seguinte limite sempre acontecerá:

\lim_{x\rightarrow\infty} \sqrt[m]{x}

Pois x\rightarrow\infty, sendo \infty POSITIVO! Certo?

Ok. Mas que tal já deixar explícito o sinal? Dessa maneira não fica dúvida sobre o que desejamos dizer. Portanto, o interessante é escrevermos:

\lim_{x \to + \infty} \sqrt[m]{x} = + \infty

antonelli2006 escreveu:Me baseei na definição "que a raiz m-ésima de qualquer número positivo é sempre positivo"! *-)

Ok.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: