• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais (problemas de valor inicial)

Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 16:26

Tô com problemas para chegar no resultado dessa integral:

\frac{dv}{dt}=\frac{3}{t \sqrt[]{t²-1}}, t>1, v(2)=0

Integrando cheguei a esse resultado:

\int_{}^{}\frac{dv}{dt}dt=3\int_{}^{}\left(\frac{1}{t\sqrt{t²-1}} \right)
dv=3 arc sec t

No livro, a resposta é dv=3 arc sec t- \pi...

De onde raios saiu esse \pi :?:

e não consegui tirar essa  de dentro da raiz tbm não rsrsrs... Alguem poderia me ajudar???
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integrais (problemas de valor inicial)

Mensagempor MarceloFantini » Sex Set 16, 2011 17:22

Talvez seja da condição inicial, pois na resolução da integral o resultado será v = 3 \textrm{ arcsec } t + K, mas com a condição você encontra o valor de K.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 17:48

A condição inicial é t>1, v(2)=0, substituindo o valor de t do resultado por 2 (e eu sou pessima em arcs), significa então que o resultado de K seria esse:


\kappa=3 arc sec t

\kappa=3 arc sec 2

\kappa=-\frac{3\pi}{3}

\kappa=-\pi

Uma conclusão lógica apenas, não faço a mais minima ideia de pq arc sec 2=-\frac{\pi}{3}...

Alguem aí com uma luz para mim???
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integrais (problemas de valor inicial)

Mensagempor MarceloFantini » Sex Set 16, 2011 18:02

A função \alpha = \textrm{arcsec} t lê-se "o arco cuja secante é t", ou seja, você tem um ângulo \alpha tal que \sec \alpha = t. Vamos ao exercício para facilitar o entendimento: se \alpha = \textrm{arcsec }2 então \sec \alpha = 2, mas \sec \alpha = \frac{1}{\cos \alpha} e daí \frac{1}{\cos \alpha} = 2 \implies \cos \alpha = \frac{1}{2}. O valor de \alpha que satisfaz é \frac{\pi}{3}, e portanto \alpha = \textrm{arcsec }2 = \frac{\pi}{3}. Então, temos v(2) = 0 \implies 3 \textrm{ arcsec }2 +K = 0 \implies K = -3 \textrm{ arcsec }2 = - \pi.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 18:53

Obrigado Fantini vou copiar isso, tô apanhando aqui com as integrais que envolvem os arcos... tenho que dedicar um tempo extra às relações trigonométricas.
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}