• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais (problemas de valor inicial)

Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 16:26

Tô com problemas para chegar no resultado dessa integral:

\frac{dv}{dt}=\frac{3}{t \sqrt[]{t²-1}}, t>1, v(2)=0

Integrando cheguei a esse resultado:

\int_{}^{}\frac{dv}{dt}dt=3\int_{}^{}\left(\frac{1}{t\sqrt{t²-1}} \right)
dv=3 arc sec t

No livro, a resposta é dv=3 arc sec t- \pi...

De onde raios saiu esse \pi :?:

e não consegui tirar essa  de dentro da raiz tbm não rsrsrs... Alguem poderia me ajudar???
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integrais (problemas de valor inicial)

Mensagempor MarceloFantini » Sex Set 16, 2011 17:22

Talvez seja da condição inicial, pois na resolução da integral o resultado será v = 3 \textrm{ arcsec } t + K, mas com a condição você encontra o valor de K.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 17:48

A condição inicial é t>1, v(2)=0, substituindo o valor de t do resultado por 2 (e eu sou pessima em arcs), significa então que o resultado de K seria esse:


\kappa=3 arc sec t

\kappa=3 arc sec 2

\kappa=-\frac{3\pi}{3}

\kappa=-\pi

Uma conclusão lógica apenas, não faço a mais minima ideia de pq arc sec 2=-\frac{\pi}{3}...

Alguem aí com uma luz para mim???
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: Integrais (problemas de valor inicial)

Mensagempor MarceloFantini » Sex Set 16, 2011 18:02

A função \alpha = \textrm{arcsec} t lê-se "o arco cuja secante é t", ou seja, você tem um ângulo \alpha tal que \sec \alpha = t. Vamos ao exercício para facilitar o entendimento: se \alpha = \textrm{arcsec }2 então \sec \alpha = 2, mas \sec \alpha = \frac{1}{\cos \alpha} e daí \frac{1}{\cos \alpha} = 2 \implies \cos \alpha = \frac{1}{2}. O valor de \alpha que satisfaz é \frac{\pi}{3}, e portanto \alpha = \textrm{arcsec }2 = \frac{\pi}{3}. Então, temos v(2) = 0 \implies 3 \textrm{ arcsec }2 +K = 0 \implies K = -3 \textrm{ arcsec }2 = - \pi.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais (problemas de valor inicial)

Mensagempor Anne2011 » Sex Set 16, 2011 18:53

Obrigado Fantini vou copiar isso, tô apanhando aqui com as integrais que envolvem os arcos... tenho que dedicar um tempo extra às relações trigonométricas.
Anne2011
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qui Jun 23, 2011 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59