• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Radiciação] Raízes dentro de raízes

[Radiciação] Raízes dentro de raízes

Mensagempor mottasky » Ter Set 13, 2011 22:00

Galera, estou tentando resolver está Racionalização, mas estou meio perdido, se alguém puder me ajudar, a resposta eu sei gostaria de saber como resolver!

Sendo \; A=\sqrt[3]{10-\sqrt[3]{6+\sqrt[3]{8}}} }\;e \; B= \sqrt[]{7 +\sqrt[]{7 - \sqrt[]{9}}}\,,calcule \,o \, valor \, de \; \sqrt[]{{A}^{4} + {B}^{2}}

Obs: o resultado tem que dar: 5

Obrigado pessoal!
mottasky
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 13, 2011 21:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: formado

Re: [Radiciação] Raízes dentro de raízes

Mensagempor MarceloFantini » Ter Set 13, 2011 22:14

Use que 8 = 2^3 e 9 = 3^2, isto cancelará as primeiras raízes. Daí tente enxergar o resto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Radiciação] Raízes dentro de raízes

Mensagempor mottasky » Qui Set 15, 2011 15:52

MarceloFantini escreveu:Use que 8 = 2^3 e 9 = 3^2, isto cancelará as primeiras raízes. Daí tente enxergar o resto.


KKKKk

Muito obrigado, não acredito que não vi isso, a partir dai fica facil, é só ir cancelando muito obrigado!
mottasky
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 13, 2011 21:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}