por moyses » Sáb Set 03, 2011 23:04
oi professor luiz tudo bem?

olha outro limite para você me ajdar e ver se eu to certo? eu tenho que calcula um exemplo de expressões de indeterminação matemática do tipo

! to com uma apostila de calculo aqui que eu baixei da net em um dos exemplos resolvidos desse tipo indeterminação matemática

ta assim :
![[tex]\lim_{x\rightarrow+\infty}=\frac{{x}^{5}+{3x}^{2}}{2x+1}=\lim_{x\rightarrow+\infty}=\frac{{x}^{5}\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2x\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}=\frac{x\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}\frac{x}{2}+\lim_{x\rightarrow+\infty}\frac{\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{\left(\frac{1}{2x} +1\right)} [tex]\lim_{x\rightarrow+\infty}=\frac{{x}^{5}+{3x}^{2}}{2x+1}=\lim_{x\rightarrow+\infty}=\frac{{x}^{5}\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2x\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}=\frac{x\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}\frac{x}{2}+\lim_{x\rightarrow+\infty}\frac{\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{\left(\frac{1}{2x} +1\right)}](/latexrender/pictures/358caf2998da5213c2bc20665699eb93.png)
[/tex] o resultado desse exemplo resolvido é !

a minha duvida é como resover esse exercio ultilizando a regra de deixar o termo de maior do denomindar e numerador em evidencia desse exercicio

usando essa regra de evidencia e as propriedade dos limites eu tentei resolve-lo mais não consigui tirar a indeterminação matematica!

a pergunta é estou fazendo a conta acima corretamente? por se eu continuar vai gerar outra indeterminação matematica! do tipo

e ai alguma sugestão ta certo rsrs dscupa to muito ancioso pro sua resposta

! desde já grato!
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por LuizAquino » Dom Set 04, 2011 15:03
moyses escreveu:oi professor luiz tudo bem?

olha outro limite para você me ajdar e ver se eu to certo?
A ideia de um fórum é que
todos possam ajudar. Por favor, não envie a sua mensagem direcionando para um usuário específico do fórum.
Quanto ao limite, usando a estratégia de colocar termos em evidência, o correto seria você ter feito:

Agora tente terminar de resolver o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por moyses » Seg Set 05, 2011 08:51
Porfessor eu entedi que senhor fez , o senhor deixou em evidência o maior termo certo ! o que eu não endenti nos exemplos da apostila e nesse tabem que o senhor me respondeu e de que: de onde o senhor tirou esse 1 ai que ta dentro do parentes da parte de cima do numerador!
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por moyses » Seg Set 05, 2011 08:54
e me descupe eu sei que todos ajudam mais quem me ajudo por enquanto foi só o senhor! por isso que eu perguntei diretamente a ti!

-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por LuizAquino » Seg Set 05, 2011 12:04
moyses escreveu:o que eu não endenti nos exemplos da apostila e nesse também que o senhor me respondeu e de que: de onde o senhor tirou esse 1 ai que ta dentro do parentes da parte de cima do numerador!
Veja que de forma conveniente podemos escrever (caso x não seja nulo):

moyses escreveu:e me descupe eu sei que todos ajudam mais quem me ajudo por enquanto foi só o senhor! por isso que eu perguntei diretamente a ti!

Ok. Mas da próxima vez não repita esse procedimento.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por moyses » Seg Set 05, 2011 12:33
então tuda vez que o x não for nulo pode fazer isso?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por LuizAquino » Seg Set 05, 2011 12:37
moyses escreveu:então tuda vez que o x não for nulo pode fazer isso?
É claro.
Apenas lembrando, veja que se x fosse nulo, então não poderíamos ter escrito a fração

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por moyses » Qui Set 08, 2011 12:09
por que fica nessa conta que você fez


e não


como tava na conta original?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por moyses » Qui Set 08, 2011 12:11
descupa eu errei ai! rsrs de novo: perguntando para todo mundo: por que fica

e não isso

?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
por moyses » Qui Set 08, 2011 13:58
ahh !

descobri por que é por que a expressão foi fatorado não é?
-
moyses
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Seg Ago 29, 2011 09:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: SISTEMA DE INFORMAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites]Tendendo a mais e a menos infinito
por Brunorp » Sex Abr 03, 2015 12:42
- 1 Respostas
- 1402 Exibições
- Última mensagem por adauto martins

Sex Abr 03, 2015 21:28
Cálculo: Limites, Derivadas e Integrais
-
- Limite com x tendendo ao infinito
por PeterHiggs » Ter Mar 04, 2014 16:53
- 2 Respostas
- 3567 Exibições
- Última mensagem por PeterHiggs

Ter Mar 04, 2014 23:08
Cálculo: Limites, Derivadas e Integrais
-
- Determinar o limite tendendo ao infinito.
por Arthur_Bulcao » Sex Mar 23, 2012 17:34
- 6 Respostas
- 5051 Exibições
- Última mensagem por Arthur_Bulcao

Qua Mar 28, 2012 19:08
Cálculo: Limites, Derivadas e Integrais
-
- Limite: Cosseno(x) e Seno(x) com X tendendo a infinito
por lucasguilherme2 » Qui Mai 24, 2012 11:49
- 3 Respostas
- 44188 Exibições
- Última mensagem por LuizAquino

Ter Mai 29, 2012 11:54
Cálculo: Limites, Derivadas e Integrais
-
- (Limite) tendendo a - infinito com raiz cúbica
por kAKO » Qui Mai 07, 2015 12:18
- 1 Respostas
- 4235 Exibições
- Última mensagem por adauto martins

Sáb Mai 09, 2015 15:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.