


![[tex]\lim_{x\rightarrow+\infty}=\frac{{x}^{5}+{3x}^{2}}{2x+1}=\lim_{x\rightarrow+\infty}=\frac{{x}^{5}\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2x\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}=\frac{x\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}\frac{x}{2}+\lim_{x\rightarrow+\infty}\frac{\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{\left(\frac{1}{2x} +1\right)} [tex]\lim_{x\rightarrow+\infty}=\frac{{x}^{5}+{3x}^{2}}{2x+1}=\lim_{x\rightarrow+\infty}=\frac{{x}^{5}\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2x\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}=\frac{x\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{2\left(\frac{1}{2x} +1\right)}=\lim_{x\rightarrow+\infty}\frac{x}{2}+\lim_{x\rightarrow+\infty}\frac{\left(\frac{1}{{x}^{5}} +\frac{1}{{3x}^{2}}\right)}{\left(\frac{1}{2x} +1\right)}](/latexrender/pictures/358caf2998da5213c2bc20665699eb93.png)





moyses escreveu:oi professor luiz tudo bem?olha outro limite para você me ajdar e ver se eu to certo?
moyses escreveu:o que eu não endenti nos exemplos da apostila e nesse também que o senhor me respondeu e de que: de onde o senhor tirou esse 1 ai que ta dentro do parentes da parte de cima do numerador!
moyses escreveu:e me descupe eu sei que todos ajudam mais quem me ajudo por enquanto foi só o senhor! por isso que eu perguntei diretamente a ti!
moyses escreveu:então tuda vez que o x não for nulo pode fazer isso?
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante