• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral por substituição]: sinais do denominador

[Integral por substituição]: sinais do denominador

Mensagempor Caroline Oliveyra » Dom Set 04, 2011 13:51

Olá!

Gostaria que vocês me ajudassem em uma dúvida que eu estou tendo em vários exercícios. Talvez seja um erro de matemática simples (pra variar)... *-)

Em uma das minhas listas de exercícios apareceu esta integral: \int_{}^{}\frac{1}{x^2 - 8x +7} dx

Bom, a minha resolução foi:

\int_{}^{}\frac{1}{x^2 - 8x +7} dx =

\int_{}^{}\frac{1}{x^2 - 8x + 16 - 9} dx =

\int_{}^{}\frac{1}{(x - 4)^2 - 9} dx =

\int_{}^{}\frac{1}{9[\frac{(x - 4)^2}{9} - 1]} dx =

\frac{1}{9}\int_{}^{}\frac{1}{\frac{(x - 4)^2}{9} - 1} dx =

A partir deste ponto eu fiz a substituição para a variável u (o exercício especificava que tinha que ser por substituição):

\frac{(x - 4)^2}{9} = u^2 \rightarrow u = \frac{x - 4}{3}

e consequentemente: du = \frac{1}{3}dx

Até aí tudo bem. Eu substituí o u e multipliquei a integral por três, por causa da fração que aparece no du:

\frac{1}{9}3\int_{}^{}\frac{1}{u^2 - 1} = \frac{1}{3}\int_{}^{}\frac{1}{u^2 - 1}

Acontece que eu coloquei essa integral no Wolfram e o resultado foi -\frac{1}{3} arctg \frac{x-4}{3}

Acontece que o denominador da derivada da arctg é x^2 + 1. Colocar um sinal negativo na constante que multiplica a integral faz com que esse sinal mude? Eu tive outras dúvidas desse tipo. Tiveram denominadores que, após a subatituição na variável u, apareceu 1 - x^2 e no Wolfram tbm apareceu um resultado de arctg... Pra mim só podia ser arctg se aparecesse específicamente x^2 + 1 no denominador da integral.

Bom, se alguém puder esclarecer essa dúvida eu agradeço muito desde já :-D

Obrigada e beijos!!!!!
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: [Integral por substituição]: sinais do denominador

Mensagempor LuizAquino » Dom Set 04, 2011 16:07

Você está confundindo a inversa da função tangente hiperbólica com a inversa função tangente.

Veja com atenção o que há na página wolframalpha:

inversa-da-tangente-hiperbólica.png
inversa-da-tangente-hiperbólica.png (28.4 KiB) Exibido 2275 vezes


Na própria página há uma referência para a definição da inversa da função tangente hiperbólica:
Inverse Hyperbolic Tangent
http://mathworld.wolfram.com/InverseHyp ... ngent.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integral por substituição]: sinais do denominador

Mensagempor Caroline Oliveyra » Dom Set 04, 2011 19:08

Olá! :-D

Bom, eu coloquei outras integrais aqui no wolfram cuja resposta eu sei que é arctg (por causa da definição) e confere com a definição de arctg que eu conheço: arctg(x)= \frac{1}{x^2 +1}

Não consegui entender onde foi que eu me enganei. Mesmo assim obrigada.
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: [Integral por substituição]: sinais do denominador

Mensagempor LuizAquino » Dom Set 04, 2011 21:00

Caroline Oliveyra escreveu:Bom, eu coloquei outras integrais aqui no wolfram cuja resposta eu sei que é arctg (por causa da definição) e confere com a definição de arctg que eu conheço: arctg(x)= \frac{1}{x^2 +1}

Essa não é a definição da função arcotangente!

Na verdade, o que você escreveu foi a derivada da função arcotangente:

(\textrm{arctg} \, x)^{\prime} = \frac{1}{x^2 +1}


Caroline Oliveyra escreveu:Não consegui entender onde foi que eu me enganei.

Bom, a minha resolução foi:

\int_{}^{}\frac{1}{x^2 - 8x +7} dx =

\int_{}^{}\frac{1}{x^2 - 8x + 16 - 9} dx =

\int_{}^{}\frac{1}{(x - 4)^2 - 9} dx =

\int_{}^{}\frac{1}{9[\frac{(x - 4)^2}{9} - 1]} dx =

\frac{1}{9}\int_{}^{}\frac{1}{\frac{(x - 4)^2}{9} - 1} dx =

A partir deste ponto eu fiz a substituição para a variável u (o exercício especificava que tinha que ser por substituição):

\frac{(x - 4)^2}{9} = u^2 \rightarrow u = \frac{x - 4}{3}

e consequentemente: du = \frac{1}{3}dx

Até aí tudo bem. Eu substituí o u e multipliquei a integral por três, por causa da fração que aparece no du:

\frac{1}{9}3\int_{}^{}\frac{1}{u^2 - 1} = \frac{1}{3}\int_{}^{}\frac{1}{u^2 - 1}

O desenvolvimento que você fez acima está correto, sendo que se você continuá-lo (aplicando frações parciais no passo que você parou) deve encontrar no final que:

\int \frac{1}{x^2 - 8x + 7}\, dx = \frac{1}{6}[\ln|x-7|-\ln|x-1|] + c

E se você colocar essa integral no wolframalpha verá, como ilustra a figura que enviei acima, que ele indicará o seguinte desenvolvimento:

wolframalpha.com escreveu:Possible intermediate steps:

\int \frac{1}{x^2 - 8x + 7}\, dx

For the integrand \frac{1}{x^2 - 8x + 7}, complete the square:

= \int \frac{1}{(x-4)^2-9}\, dx

For the integrand \frac{1}{(x-4)^2-9}, substitute u = x-4 and du = dx:

=  \int \frac{1}{u^2-9}\, du

The integral of \frac{1}{u^2-9} is -\frac{1}{3}\textrm{tanh}^{-1}\,\left(\frac{u}{3}\right):

= -\frac{1}{3}\textrm{tanh}^{-1}\,\left(\frac{u}{3}\right)+\textrm{constant}

Substitute back for u = x-4:

= -\frac{1}{3}\textrm{tanh}^{-1}\,\left(\frac{x-4}{3}\right)+\textrm{constant}

Which is equivalent for restricted x values to:

= \frac{1}{6} [\log(7-x)-\log(1-x)]+\textrm{constant}

\log (x) is the natural logarithm
\textrm{tanh}^{-1}\,(x) is the inverse hyperbolic tangent function
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?