• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo II integral]

[calculo II integral]

Mensagempor paula luna » Seg Ago 22, 2011 21:52

- Substituiçao trigonometrica -

Olha nao to conseguindo achar a resposta certa para esta questao.

\int_{}^{}\frac{dx}{{x}^{2}\sqrt[2]{{x}^{2}-5}}

Bem eu fiz as devidas subsituiçoes, e resolvi como podem ver abaixo

substituiçoes:
\sqrt[2]{{x}^{2}-5} = \sqrt[2]{5}.tg(\theta)
x = \sqrt[2]{5}.sec(\theta)
dx = \sqrt[2]{5}.sec(\theta).tg(\theta).d\theta

Resoluçao:
\int_{}^{}\frac{\sqrt[2]{5}.sec(\theta).tg(\theta).d\theta}{5.{sec}^{2}(\theta).\sqrt[2]{5}.tg(\theta)} = \frac{1}{5}\int_{}^{}\frac{1}{sec(\theta)} = \frac{1}{5}sen(\theta) = \frac{\sqrt[2]{{x}^{2}-5}}{5}+ C

Resposta certa:
\frac{\sqrt[2]{{x}^{2}-5}}{5x}+ C

Ou seja, para resumir, da onde veio aquele x no denominador?
:y: :y: :y: :y:
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo II integral]

Mensagempor LuizAquino » Ter Ago 23, 2011 08:24

Você fez a substituição x = \sqrt{5} \sec \theta .

Desenvolvendo essa equação para aparecer o seno do ângulo, obtemos \textrm{sen}\,\theta = \frac{\sqrt{x^2-5}}{x} .

Você deve ter se atrapalhado nesse desenvolvimento. Envie a sua resolução dessa parte para que possamos identificar o problema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo II integral]

Mensagempor paula luna » Ter Ago 23, 2011 15:58

Nossa! Claro! pura desatençao... mas é perdoavel,, trigonometria por vezes torna-se uma coisa extremamente tediosa com suas inumeras formas de simplificar ( ou de dificultar ). Toda hora que acho uma resposta, tenho que fazer varias simplificaçoes para dai entao saber se esta ou nao certa. Mas chega a ser um passatempo bem ... divertido , "Aprecie com moderaçao" :-D

Obg todos que leram e ao Luiz que sempre responde nossas duvidas por mais "idiotas" que possam ser (parecer).

Obs.: Desculpa os erros de portugues, ha um motivo significante para escolher a area da eng. (nao que isso explique os erros *-) )
paula luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Mai 05, 2011 21:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo II integral]

Mensagempor LuizAquino » Ter Ago 23, 2011 19:11

paula luna escreveu:Desculpa os erros de portugues, ha um motivo significante para escolher a area da eng. (nao que isso explique os erros *-) )


Com certeza o fato de escolhermos a área de exatas não é desculpa para descuidar do Português.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.